Skip to main content
Log in

Identity of the cells recruited to a lesion in the central nervous system of a decapod crustacean

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In a previous study, we analyzed and described the features of the degeneration of the protocerebral tract (PCT) of the crustacean Ucides cordatus, after the extirpation of the eyestalk. In that study, among axons with axoplasmic degeneration, cells with granules resembling blood cells (hemocytes) were seen. Therefore, in the present study, we characterized the circulating hemocytes and compared them with the cells recruited to a lesion, which was produced as in the former study. Using histochemistry, immunohistochemistry, and electron microscopy (transmission and scanning), we confirmed that circulating and recruited cells display a similar morphology. Therefore, in the crab, hemocytes were attracted to the lesion site in the acute stage of degeneration, appearing near local glial cells that showed signs of being responsive. Some of the attracted hemocytes displayed a morphology that was considered to be possibly activated blood cells. Also, the cells that migrated to the injured PCT displayed features, such as the presence of hydrolytic enzymes and an ability to phagocytize neural debris, similar to those of vertebrates. In summary, our results indicate that hemocytes were not only phagocytizing neural debris together with glial cells but also that they may be concerned with creating a favorable environment for regenerating events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allodi S, da Silva SF, Taffarel M (1999) Glial cells of the central nervous system in the crab Ucides cordatus. Invertebr Biol 118:175–183

    Article  Google Scholar 

  • Battison A, Cawthorn R, Horney B (2003) Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). J Invertebr Pathol 843:177–197

    Article  Google Scholar 

  • Bauchau AG (1981) Crustaceans. In: Ratcliffe NA, Rowley AF (eds) Invertebrate Blood Cells, vol 2. Academic, New York, pp 386–420

    Google Scholar 

  • Benowitz LI, Yin YQ (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons´ intrinsic growth state. Dev Neurobiol 67:1148–1165

    Article  CAS  PubMed  Google Scholar 

  • Blundon JA, Sheller RA, Moehlenbruck JW, Bittner GD (1990) Effect of temperature on long term survival of anucleate giant axons in crayfish and goldfish. J Comp Neurol 297:377–391

    Article  CAS  PubMed  Google Scholar 

  • Chamak B, Dobbertin A, Mallat M (1995) Immunochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Kohsaka S, Razaie P (2007) The origin and cell lineage of microglia – new concepts. Brain Res Rev 53:344–354

    Article  CAS  PubMed  Google Scholar 

  • Cheng TC (1975) Functional morphology and biohistochemistry of molluscan phagocytes. Ann NY Acad Sci 266:343–379

    Article  CAS  PubMed  Google Scholar 

  • Corrêa CL, Allodi S, Martinez AM (2005) Ultrastructural study of normal and degenerating nerve fibers in the protocerebral tract of the crab Ucides cordatus. Brain Behav Evol 3:145–157

    Google Scholar 

  • Cuadros MA, Navascués J (1998) The origin and differentitation of microglial cells during development. Prog Neurobiol 56:173–189

    Article  CAS  PubMed  Google Scholar 

  • da Matta AN, Kanaan S, Silva CB, Santos DO, Côrte-Real S, de Simone G, Torres-da Matta J (1993) Changes in energetic substrates during the regeneration of planarians Dugesia tigrina (Girard). Comp Biochem Physiol 105A:341–345

    Google Scholar 

  • da Silva SF, Correa CL, Tortelote GG, Einicker-Lamas M, Martinez AM, Allodi S (2004) Glial fibrillary acidic protein (GFAP)-like immunoreactivity in the visual system of the crab Ucides cordatus (Crustacea, Decapoda). Biol Cell 96:727–734

    Article  Google Scholar 

  • De Duve C, Passau L, Maisin J (1955) Acid phosphatase and beta-glucuronidase activities in the livers from rats fed 4-dimethylaminoazobenzene. Acta Unio Int Contra Cancrum 11:638–639

    Google Scholar 

  • Engelmann P, Cooper EL, Németh P (2005) Anticipating innate immunity without a Toll. Mol Immunol 42:931–942

    Article  CAS  PubMed  Google Scholar 

  • Gargioni R, Barracco MA (1998) Hemocytes of the Palaemonids Macrobrachium rosenbergii and M. acanthurus, and of the Penaeid Penaeus paulensis. J Morphol 236:209–221

    Article  CAS  PubMed  Google Scholar 

  • Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA (2007) Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge. Micron 38:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gomori G (1941) Distribution of acid phosphatase in the tissues under normal and under pathologic conditions. Arch Pathol 32:189

    CAS  Google Scholar 

  • Gomori G (1953) Chloracyl esters as histochemical substrates. J Histochem Cytochem 6:486–492

    Google Scholar 

  • Graeber MB, Streit W, Kiefer R, Schoen SW, Kreutzberg GW (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol 27:121–132

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hillyer JF, Christensen BM (2002) Characterization of hemocytes from the yellow fever mosquito Aedes aegypti. Histochem Cell Biol 117:431–440

    Article  CAS  PubMed  Google Scholar 

  • Hoeger U (1994) Hydrolitic enzymes in the coelomic cells of the polychaete Nereis viriens during sexual maturation. Mar Biol 110:7–12

    Article  Google Scholar 

  • Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating morphology, cytochemistry, and function. Biol Bull 178:33–45

    Article  Google Scholar 

  • Johansson MW, Keyser P, Sritunyalucksana K, Södehäll K (2000) Crustacean haemocytes and haematopoesis. Aquaculture 191:45–52

    Article  CAS  Google Scholar 

  • Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212

    Article  CAS  PubMed  Google Scholar 

  • Lima FRS, Gervais A, Colin C, Izambar M, Moura Neto V, Mallat M (2001) Regulation of microglial development: a novel role for thyroid hormone. J Neurosci 21:2028–2038

    CAS  PubMed  Google Scholar 

  • Lockwood APM (1961) “Ringer”, solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol 2:241–281

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon S, Francese M, Smith VJ, Ferrero EA (2001) Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish Shellfish Immunol 11:459–472

    Article  CAS  Google Scholar 

  • Martin GG, Graves BL (1985) Fine structure and classification of shrimp hemocytes. J Morphol 185:339–348

    Article  Google Scholar 

  • Martinez AMB, Ribeiro LCV (1998) Ultrastructural localization of calcium in peripheral nerve fibers undergoing Wallerian degeneration: an oxalate-pyroantimonate and X-ray microanalysis study. J Submicrosc Cytol Pathol 30:451–458

    CAS  PubMed  Google Scholar 

  • Milićević NM, Milićević Z (1985) Naphthol AS D chloroacetate esterase-positive macrophages in the cortico-medullary zone of the normal rat thymus. Virchows Archiv B Cell Pathol Zell-pathol 50:193–198

    Google Scholar 

  • Moloney WC, Mcpherson K, Fliegelman L (1960) Esterase activity in leukocytes demonstrated by the use of naphthol AS-D chloroacetate substrate. J Histochem Cytochem 8:200–207

    CAS  PubMed  Google Scholar 

  • Narciso M, De Siqueira MB, Marques S, Soares C, Dos Santos MC, El-Cheik M, Martinez AMB (2009) Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol 217:7–15

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Anderson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273

    Article  CAS  PubMed  Google Scholar 

  • Pipe RK (1990) Hydrolitic enzymes associated with granular hemocytes of the marine mussel Mytilus edulis. Histochem J 22:595–603

    Article  CAS  PubMed  Google Scholar 

  • Pipe RK, Farley SR, Coles JA (1997) The separation and characterization of haemocytes from the mussel Mytilus edulis. Cell Tissue Res 289:537–545

    Article  CAS  PubMed  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomom A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulation homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  CAS  PubMed  Google Scholar 

  • Sandeman D, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobster: A common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Smith PJS, Howes EA, Treherne JE (1987) Mechanisms of glial regeneration in an insect. J Exp Biol 132:59–78

    CAS  PubMed  Google Scholar 

  • Söderhäll K, Smith VJ (1983) Separation of the haemocytes population of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol 7:229–239

    Article  PubMed  Google Scholar 

  • Streit WJ, Kreutzberg GW (1987) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J Comp Neurol 268:248–263

    Article  Google Scholar 

  • Tanner SL, Storm EE, Bittner GD (1995) Protein transport in intact and severed (anucleate) crayfish giant axons. J Neurochem 64:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Treherne JE, Harrison JB, Treherne JM, Lane NJ (1984) Glial repair in an insect central nervous system: effects of surgical lesioning. J Neurosci 4:2689–2697

    CAS  PubMed  Google Scholar 

  • Van De Braak CBT, Botterblom MHA, Liu W, Van Der Knaap WPW, Rombout JHWM (2002) The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 12:253–272

    Article  PubMed  Google Scholar 

  • Waller A (1850) Experiments on the section of glossopharyngeal and hypoglossal nerves of frog and observations of the alterations produced thereby in the structure of their primitive fibers. Phil Trans R Soc Lond 140:423–429

    Article  Google Scholar 

  • Yam LT, Li CY, Crosby WH (1971) Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55:283–290

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jorge Luís da Silva for technical support, to the Hertha Meyer Cell Ultrastructure Laboratory, IBCCF, Universidade Federal do Rio de Janeiro, and to the Department of Ultrastrucutre and Cell Biology, FOC, Instituto Oswaldo Cruz, for the electron microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Allodi.

Additional information

Financial support CAPES, CNPq, FAPERJ, and FUJB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves-da-Silva, P.G., de Barros, C.M., Lima, F.R.S. et al. Identity of the cells recruited to a lesion in the central nervous system of a decapod crustacean. Cell Tissue Res 342, 179–189 (2010). https://doi.org/10.1007/s00441-010-1045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1045-x

Keywords

Navigation