Skip to main content
Log in

Central nervous system regeneration in ascidians: cell migration and differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adult ascidians have the capacity to regenerate the central nervous system (CNS) and are therefore excellent models for studies on neuroregeneration. The possibility that undifferentiated blood cells are involved in adult neuroregeneration merits investigation. We analyzed the migration, circulation, and role of hemocytes of the ascidian Styela plicata in neuroregeneration. Hemocytes were removed and incubated with superparamagnetic iron oxide nanoparticles (SPION), and these SPION-labeled hemocytes were injected back into the animals (autologous transplant), followed by neurodegeneration with the neurotoxin 3-acetylpyridine (3AP). Magnetic resonance imaging showed that 1, 5, and 10 days after injury, hemocytes migrated to the intestinal region, siphons, and CNS. Immunohistochemistry revealed that the hemocytes that migrated to the CNS were putative stem cells (P-element-induced wimpy testis + or PIWI + cells). In the cortex of the neural ganglion, migrated hemocytes started to lose their PIWI labeling 5 days after injury, and 10 days later started to show β-III tubulin labeling. In the neural gland, however, the hemocytes remained undifferentiated during the entire experimental period. Transmission electron microscopy revealed regions in the neural gland with characteristics of neurogenic niches, not previously reported in ascidians. These results showed that migration of hemocytes to the hematopoietic tissue and to the 3AP-neurodegenerated region is central to the complex mechanism of neuroregeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226:190–201

    Article  Google Scholar 

  • Alvarenga BM, Melo MN, Frézard FJG, Demicheli C, Gomes JMM, Silva JBB, Speziali NL, Junior JDC (2015) Nanoparticle phosphate-based composites as vehicles for antimony delivery to macrophages: possible use in leishmaniasis. J Mater Chem B 3:9250–9259

    Article  CAS  Google Scholar 

  • Anton R, Kestler HA, Kühl M (2007) β-Catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett 581:5247–5254

    Article  CAS  Google Scholar 

  • Auger H, Sasakura Y, Joly JS, Jeffery WR (2010) Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev Biol 339:374–389

    Article  CAS  Google Scholar 

  • Ballarin L, Kawamura K (2009) The hemocytes of Polyandrocarpa misakiensis: morphology and immune-related activities. Invertebr Surv J 6:154–161

    Google Scholar 

  • Beltz BS, Cockey EL, Li J, Platto JF, Ramos KA, Benton JL (2015) Adult neural stem cells: long-term self-renewal, replenishment by the immune system, or both? BioEssays 37:495–501

    Article  Google Scholar 

  • Beltz BS, Benton JL (2017) From blood to brain: adult-born neurons in the crayfish brain are the progeny of cells generated by the immune system. Front Neurosci 11:662

    Article  Google Scholar 

  • Benton JL, Kery R, Li J, Noonin C, Söderhäll I, Beltz BS (2014) Cells from the immune system generate adult-born neurons in crayfish. Dev Cell 30:322–333

    Article  CAS  Google Scholar 

  • Bideau L, Kerner P, Hui J, Vervoort M, Gazave E (2021) Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 78:3941–3956

    Article  CAS  Google Scholar 

  • Blanchoud S, Zondag L, Lamare MD, Wilson M (2017) Hematological analysis of the ascidian Botrylloides leachii (Savigny, 1816) during whole-body regeneration. Biol Bull 232:143–157

    Article  Google Scholar 

  • Bollner T, Beesley PW, Thorndyke MC (1992) Pattern of substance P-and cholecystokinin-like immunoreactivity during regeneration of the neural complex in the ascidian Ciona intestinalis. J Comp Neurol 325:572–580

    Article  CAS  Google Scholar 

  • Bollner T, Howalt S, Thorndyke MC, Beesley PW (1995) Regeneration and post-metamorphic development of the central nervous system in the protochordate Ciona intestinalis: a study with monoclonal antibodies. Cell Tissue Res 279:421–432

    Article  CAS  Google Scholar 

  • Bollner T, Beesley PW, Thorndyke MC (1997) Investigation of the contribution from peripheral GnRH-like immunoreactive ‘neuroblasts’ to the regenerating central nervous system in the protochordate Ciona intestinalis. Proc R Soc Lond B 264:1117–1123

    Article  CAS  Google Scholar 

  • Brown FD, Keeling EL, Le AD, Swalla BJ (2009) Whole body regeneration in a colonial ascidian, Botrylloides violaceus. J Exp Zool B Mol Dev Evol 312:885–900

    Article  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  CAS  Google Scholar 

  • Burighel P, Lane NJ, Zaniolo G, Manni L (1998) Neurogenic role of the neural gland in the development of the ascidian, Botryllus schlosseri (Tunicata, Urochordata). J Comp Neurol 394:230–241

    Article  CAS  Google Scholar 

  • Cavalcante MC, Allodi S, Valente AP, Straus AH, Takahashi HK, Mourão PA, Pavão MS (2000) Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment. An ancient role in defense? J Biol Chem 275:36189–36196

    Article  CAS  Google Scholar 

  • Chaves-Da-Silva PG, de Barros CM, Lima FRS, Biancalana A, Martinez AMB, Allodi S (2010) Identity of the cells recruited to a lesion in the central nervous system of a decapod crustacean. Cell Tissue Res 342:179–189

    Article  Google Scholar 

  • Chaves da Silva PG, Benton JL, Sandeman DC, Beltz BS (2013) Adult neurogenesis in the crayfish brain: the hematopoietic anterior proliferation center has direct access to the brain and stem cell niche. Stem Cells Dev 22:1027–1041

    Article  CAS  Google Scholar 

  • Chaves-da-Silva PG, Santos de Abreu I, Cavalcante LA, De Barros CM, Allodi S (2015) Role of hemocytes in invertebrate adult neurogenesis and brain repair. ISJ 12:142–154

    Google Scholar 

  • Chaves da Silva PG, Hsu K, Benton JL, Beltz BS, Allodi S (2020) A balancing act: the immune system supports neurodegeneration and neurogenesis. Cell Mol Neurobiol 40:967–989

    Article  CAS  Google Scholar 

  • Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, Friedman RA, Middelhoff M, Ding H, Tailor YH, Wang ALE, Liu H, Niu Z, Wang H, Jiang Z, Renders S, Ho S-H, Shah SV, Tishchenko P, Chang W, Swayne TC, Munteanu L, Califano A, Takahashi R, Nagar KK, Renz BW, Worthley DL, Westphalen CB, Hayakawa Y, Asfaha S, Borot F, Lin C-S, Snoeck H-W, Mukherjee S, Wang TC (2017) Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell 21:747–760

    Article  CAS  Google Scholar 

  • Dahlberg C, Auger H, Dupont S, Sasakura Y, Thorndyke M, Joly JS (2009) Refining the Ciona intestinalis model of central nervous system regeneration. PLoS ONE 4:e4458

    Article  Google Scholar 

  • de Barros CM, Andrade LR, Allodi S, Viskov C, Mourier PA, Cavalcante M, Straus A, Takahashi H, Pomin V, Carvalho V, Martins M, Pavão MSG (2007) The hemolymph of the ascidian Styela plicata (Chordata-Tunicata) contains heparin inside basophil-like cells and a unique sulfated galactoglucan in the plasma. J Biol Chem 282:1615–1626

    Article  Google Scholar 

  • de Barros CM, De Carvalho DR, Andrade LR, Pavão MSG, Allodi S (2009) Nitric oxide production by hemocytes of the ascidian Styela plicata. Cell Tissue Res 338:117–128

    Article  CAS  Google Scholar 

  • De Leo G (1992) Ascidian hemocytes and their involvement in defence reactions. Ital J Zool 59:195–214

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965

    Article  CAS  Google Scholar 

  • Deyts C, Casane D, Vernier P, Bourrat F, Joly J-S (2006) Morphological and gene expression similarities suggest that the ascidian neural gland may be osmoregulatory and homologous to vertebrate peri-ventricular organs. Eur J Neurosci 24:2299–2308

    Article  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  Google Scholar 

  • Ferrario C, Sugni M, Somorjai IML, Ballarin L (2020) Beyond adult stem cells: dedifferentiation as a unifying mechanism underlying regeneration in invertebrate deuterostomes. Front Cell Dev Biol 8:587320

    Article  Google Scholar 

  • Font E, Desfilis E, Pérez-Cañellas M, Alcántara S, García-Verdugo JM (1997) 3-Acetylpyridine-induced degeneration and regeneration in the adult lizard brain: a qualitative and quantitative analysis. Brain Res 754:245–259

    Article  CAS  Google Scholar 

  • González-Estévez C, Felix DA, Aboobaker AA, Saló E (2007) Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proc Natl Acad Sci USA 104:13373–13378

    Article  Google Scholar 

  • Goodrich JT, Bernd P, Sherman D, Gershon MD (1980) Phylogeny of enteric serotonergic neurons. J Comp Neurol 190:15–28

    Article  CAS  Google Scholar 

  • Gordon T, Shenkar N (2018) Solitary ascidians as model organisms in regenerative biology studies. Results Probl Cell Differ 65:321–336

    Article  CAS  Google Scholar 

  • Gubert F, Decotelli AB, Bonacossa-Pereira I, Figueiredo FR, Zaverucha-Do-Valle C, Tovar-Moll F, Mendez-Otero R (2016) Intraspinal bone-marrow cell therapy at pre-and symptomatic phases in a mouse model of amyotrophic lateral sclerosis. Stem Cell Res Ther 7:41

    Article  Google Scholar 

  • Han ZC, Bellucci S, Shen ZX, Maffrand JP, Pascal M, Petitou M, Lormeau J, Caen JP (1996) Glycosaminoglycans enhance megakaryocytopoiesis by modifying the activities of hematopoietic growth regulators. J Cell Physiol 168:97–104

    Article  CAS  Google Scholar 

  • Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525

    Article  CAS  Google Scholar 

  • Hyams Y, Paz G, Rabinowitz C, Rinkevich B (2017) Insights into the unique torpor of Botrylloides leachi, a colonial urochordate. Dev Biol 428:101–117

    Article  CAS  Google Scholar 

  • Inaba K, Nomura M, Nakajima A, Hozumi A (2007) Functional proteomics in Ciona intestinalis: a breakthrough in the exploration of the molecular and cellular mechanism of ascidian development. Dev Dyn 236:1782–1789

    Article  CAS  Google Scholar 

  • Jeffery WR (2012) Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis. Mech Ageing Dev 133:629–636

    Article  CAS  Google Scholar 

  • Jeffery WR (2014) Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis. Regen 2:1–18

    Google Scholar 

  • Jiménez-Merino J, Santos de Abreu I, Hiebert L, Allodi S, Tiozzo S, De Barros CM, Brown FD (2019) Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo 10:31

    Article  Google Scholar 

  • Karamanou K, Espinosa DCR, Fortuna-Costa A, Pavão MSG (2017) Biological function of unique sulfated glycosaminoglycans in primitive chordates. Glycoconj J 34:277–283

    Article  CAS  Google Scholar 

  • Kassmer SH, Rodriguez D, De Tomaso AW (2016) Colonial ascidians as model organisms for the study of germ cells, fertility, whole body regeneration, vascular biology and aging. Curr Opin Genet Dev 39:101–106

    Article  CAS  Google Scholar 

  • Kassmer S, Nourizadeh S, De Tomaso A (2018) Cellular and molecular mechanisms of regeneration in colonial and solitary ascidians. Dev Biol 448:271–278

    Article  Google Scholar 

  • Kassmer SH, Langenbacher AD, De Tomaso A (2020) Integrin-alpha-6+ candidate stem cells are responsible for whole body regeneration in the invertebrate chordate Botrylloides diegensis. Nat Commun 11:4435

    Article  CAS  Google Scholar 

  • Kawamura K, Sugino YM (1999) Cell adhesion in the process of asexual reproduction of tunicates. Microsc Res Tech 44:269–278

    Article  CAS  Google Scholar 

  • Kawamura K, Fujiwara S (2000) Advantage or disadvantage: is asexual reproduction beneficial to survival of the tunicate, Polyandrocarpa misakiensis. Zoolog Sci 17:281–291

    CAS  Google Scholar 

  • Kawamura K, Tachibana M, Sunanaga T (2008) Cell proliferation dynamics of somatic and germline tissues during zooidal life span in the colonial tunicate Botryllus primigenus. Dev Dyn 237:1812–1825

    Article  CAS  Google Scholar 

  • Kawamura K, Sunanaga T (2010) Hemoblasts in colonial tunicates: are they stem cells or tissue-restricted progenitor cells? Dev Growth Differ 52:69–76

    Article  Google Scholar 

  • Kawamura K, Sunanaga T (2011) Role of Vasa, Piwi, and Myc-expressing coelomic cells in gonad regeneration of the colonial tunicate, Botryllus primigenus. Mech Dev 1284:57–70

    Google Scholar 

  • Kawamura K, Yoshida T, Sekida S (2018) Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates. Dev Biol 433:384–393

    Article  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    Article  CAS  Google Scholar 

  • Konrad MW (2016) Blood circulation in the ascidian tunicate Corella inflata (Corellidae). PeerJ 4:e2771

    Article  Google Scholar 

  • Koyama H, Kusunoki T (1993) Organization of the cerebral ganglion of the colonial ascidian Polyandrocarpa misakiensis. J Comp Neurol 338:549–559

    Article  CAS  Google Scholar 

  • Laird DJ, De Tomaso AW, Weissman IL (2005) Stem cells are units of natural selection in a colonial ascidian. Cell 123:1351–1360

    Article  CAS  Google Scholar 

  • Lane NJ (1971) The neural gland in tunicates: fine structure and intracellular distribution of phosphatases. Z Zellforsch 120:80–93

    Article  CAS  Google Scholar 

  • Langenbacher A, De Tomaso A (2016) Temporally and spatially dynamic germ cell niches in Botryllus schlosseri revealed by expression of a TGF-beta family ligand and vasa. EvoDevo 7:9

    Article  Google Scholar 

  • Lenhoff HM, Lenhoff SG (1991) Abraham Trembley and the origins of research on regeneration in animals. In: Dinsmore CE (ed) A history of regeneration research: milestones in the evolution of a science. Cambridge University Press, Cambridge, pp 47–66

    Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  Google Scholar 

  • Lin H (2007) piRNAs in the germ line. Science 316:397

    Article  CAS  Google Scholar 

  • Mackie GO, Burighel P (2005) The nervous system in adult tunicates: current research directions. Can J Zool 83:151–183

    Article  CAS  Google Scholar 

  • Medina BNSP, Santos de Abreu I, Cavalcante LA, Silva WAB, da Fonseca RN, Allodi S, de Barros CM (2015) 3-Acetylpyridine-induced degeneration in the adult ascidian neural complex: reactive and regenerative changes in glia and blood cells. Dev Neurobiol 75:877–893

    Article  CAS  Google Scholar 

  • Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Mendez-Otero R, Santiago MF (2014) Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS ONE 9:e110722

    Article  Google Scholar 

  • Nishida H, Sawada K (2001) Macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 409:724–729

    Article  CAS  Google Scholar 

  • Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I (2012) Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 21:3173–3186

    Article  CAS  Google Scholar 

  • Osawa Y, Miyamoto T, Ohno S, Ohno E (2018) Morphological analysis of live undifferentiated cells derived from induced pluripotent stem cells. Stem Cells Dev 27:1–9

    Article  CAS  Google Scholar 

  • Osugi T, Sasakura Y, Satake H (2017) The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): insights from transgenic animal models. PLoS ONE 12:e0180227

    Article  Google Scholar 

  • Pike-Overzet K, de Ridder D, Schonewille T, Staal FJT (2009) DNA microarray studies of hematopoietic subpopulations. Genetic modification of hematopoietic stem cells. Springer, New York, pp 403–421

    Chapter  Google Scholar 

  • Qiao W, Wang W, Laurenti E, Turinsky AL, Wodak SJ, Bader GD, Dick JE, Zandstra PW (2014) Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol Syst Biol 10:741

    Article  Google Scholar 

  • Radford J, Hutchinson A, Burandt M, Raftos D (1998) A hemocyte classification scheme for the tunicate Styela plicata. Acta Zool 79:343–350

    Google Scholar 

  • Raftos DA, Stillman DL, Cooper EL (1990) In vitro culture of tissue from the tunicate Styela clava. In Vitro Cell Dev Biol 26:962–970

    Article  CAS  Google Scholar 

  • Rinkevich B, Shlemberg Z, Fishelson L (1995) Whole-body protochordate regeneration from totipotent blood cells. Proc Natl Acad Sci USA 92:7695–7699

    Article  CAS  Google Scholar 

  • Rinkevich Y, Paz G, Rinkevich B, Reshef R (2007) Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 5:e71

    Article  Google Scholar 

  • Rinkevich Y, Rosner A, Rabinowitz C, Lapidot Z, Moiseeva E, Rinkevich B (2010) Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Dev Biol 345:94–104

    Article  CAS  Google Scholar 

  • Sardet C, McDougall A, Yasuo H, Chenevert J, Pruliere G, Dumollard R, Hudson C, Hebras C, Nguyen NL, Paix A (2011) Embryological methods in ascidians: the Villefranche-sur-Mer protocols. Methods Mol Biol 770:365–400

    Article  CAS  Google Scholar 

  • Sasakura Y, Mita K, Ogura Y, Horie T (2012) Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 54:420–437

    Article  CAS  Google Scholar 

  • Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1–3

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584

    Article  Google Scholar 

  • Sunanaga T, Saito Y, Kawamura K (2006) Postembryonic epigenesis of Vasa-positive germ cells from aggregated hemoblasts in the colonial ascidian, Botryllus primigenus. Develop Growth Differ 48:87–100

    Article  Google Scholar 

  • Sunanaga T, Inubushi H, Kawamura K (2010) Piwi-expressing hemoblasts serve as germline stem cells during postembryonic germ cell specification in colonial ascidian, Botryllus primigenus. Dev Growth Differ 52:603–614

    Article  CAS  Google Scholar 

  • Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713

    Article  CAS  Google Scholar 

  • Trento C, Marigo I, Pievani A, Galleu A, Dolcetti L, Wang CY, Dazzi F (2017) Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery. Haematologica 102:818–825

    Article  CAS  Google Scholar 

  • Vanni V, Salonna M, Gasparini F, Martini M, Anselmi C, Gissi C, Manni L (2022) Yamanaka factors in the budding tunicate Botryllus schlosseri show a shared spatiotemporal expression pattern in chordates. Front Cell Dev Biol 10:782722

    Article  Google Scholar 

  • Varga M, Sass M, Papp D, Takács-Vellai K, Kobolak J, Dinnyés A, Klionsky DJ, Vellai T (2014) Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 21:547–556

    Article  CAS  Google Scholar 

  • Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Weissman IL (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3:456–464

    Article  CAS  Google Scholar 

  • Waldrop L, Miller LA (2015) The role of the pericardium in the valveless, tubular heart of the tunicate Ciona savignyi. J Exp Biol 218:2753–2763

    Google Scholar 

  • Weir GC, Aguayo-Mazzucato C, Bonner-Weir S (2013) β-cell dedifferentiation in diabetes is important, but what is it? Islets 5:233–237

    Article  Google Scholar 

  • Zaverucha-Do-Valle C, Mesentier-Louro L, Gubert F, Mortari N, Padilha AB, Paredes BD, Tovar-Moll F (2014) Sustained effect of bone marrow mononuclear cell therapy in axonal regeneration in a model of optic nerve crush. Brain Res 1587:54–68

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Auriane Cassan Rémond for the schemes and to Rosalia Mendez-Otero for providing the nanoparticles. Janet W. Reid (JWR Associates, New York, USA) revised the English.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), and Fundação Carlos Chagas Filho de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ/RJ/Brazil) to ISA, IJRW, SA and CMB. The authors are indebted to the Plataforma de Microscopia Eletrônica Rudolph Barth from the Instituto Oswaldo Cruz/Fiocruz and to the Centro Nacional de Biologia Estrutural e Bioimagem from the Universidade Federal do Rio de Janeiro.

Author information

Authors and Affiliations

Authors

Contributions

ISA, SA, and CMB conceived and designed the study. ISA, IJRW, and JDCJr performed the experiments. ISA, JDC Jr, SA, and CMB conducted the analyses. ISA, SA, and CMB wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Silvana Allodi or Cintia Monteiro-de-Barros.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

441_2022_3677_MOESM1_ESM.tif

Supplementary file1 Fig. 1. MRI of control animals (injected only with sea water). The ascidians show a faint signal in the intestine (white arrow) and gonads (black arrowheads) (TIF 368 KB)

Supplementary file2 Fig. 2. Styela plicata blood cell viability after in-vitro incubation with SPION (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abreu, I.S., Wajsenzon, I.J.R., Dias, J.C. et al. Central nervous system regeneration in ascidians: cell migration and differentiation. Cell Tissue Res 390, 335–354 (2022). https://doi.org/10.1007/s00441-022-03677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03677-y

Keywords

Navigation