Skip to main content
Log in

Identification of intestinal M cells in isolated lymphoid follicles and Peyer’s patches of the Angora rabbit

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The presence, distribution, and localization of M cells in isolated lymphoid follicles (ILF) and in follicle-associated epithelia (FAE) covering Peyer’s patches (PP) in Angora rabbits were investigated by immunohistochemistry and electron microscopy. Although PP could macroscopically be identified along the length of the mucosal and serosal surfaces of jejunum and ileum, the presence of ILF could only be located microscopically. Typical M cells in FAE were detected within the periphery of the dome regions of the PP, and immature columnar M cells in the FAE resided in the vicinity of the crypts. M cells in the FAE of both ILF and PP showed vimentin-positive reaction. M cells in the FAE of ILF were morphologically similar to the immature M cells found in the FAE of PP. Typical mature M cells were also observed in the FAE of a few ILF. In contrast to FAE of PP, numerous goblet cells were observed in the FAE of many ILF. Moreover, among intestinal villi, we noticed villi-like solitary lymphoid structures that showed abundant lymphocytes in their lamina propria and that were surrounded with vimentin-positive cells and goblet cells. Thus, the occurrence of copious immature M cells and goblet cells, in addition to the detection of villi-like solitary lymphoid structures full of lymphocytes in the FAE of many ILF, indicate that ILF do not complete their immunological maturation in contrast to PP. Various antigenic stimulations conceivably induce the formation and maturation of ILF along the length of the small intestine. The morphological resemblance between ILF M cells and PP M cells suggests that these two types of cells perform similar or the same immunological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beyaz F, Asti RN (2004) Development of ileal Peyer’s patches and follicle associated epithelium in bovine foetuses. Anat Histol Embryol 33:172–179

    Article  CAS  PubMed  Google Scholar 

  • Borghesi C, Taussig MJ, Nicoletti C (1999) Rapid appearence of M cells after microbial challenge is restricted at the periphery of the follicle-associated epithelium of Peyer’s patch. Lab Invest 79:1393–1401

    CAS  PubMed  Google Scholar 

  • Brandtzaeg P, Kiyono V, Pabst R, Russel MW (2008) Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 1:31–37

    Article  CAS  PubMed  Google Scholar 

  • Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–1157

    Article  CAS  PubMed  Google Scholar 

  • Bye WA, Allan CH, Trier JS (1984) Structure, distribution, and origin of M cells in Peyer’s patches of mouse ileum. Gastroenterology 86:789–801

    CAS  PubMed  Google Scholar 

  • Cesta MF (2006) Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 34:599–608

    Article  PubMed  Google Scholar 

  • Clark MA, Jepson MA, Simmons NL, Booth TA, Hirst BH (1993) Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem 41:1679–1687

    CAS  PubMed  Google Scholar 

  • Corr SC, Gahan CGM, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12

    Article  CAS  PubMed  Google Scholar 

  • Crossmon G (1937) A modification of Mallory’s connective tissue stain with a discussion of the principles involved. Anat Rec 69:33–38

    Article  Google Scholar 

  • Gebert A, Bartels H (1991) Occluding junctions in the epithelia of the gut-associated lymphoid tissue (GALT) of the rabbit ileum and caecum. Cell Tissue Res 266:301–314

    Article  CAS  PubMed  Google Scholar 

  • Gebert A, Hach G (1992) Vimentin antibodies stain membranous epithelial cells in the rabbit bronchus-associated lymphoid tissue (BALT). Histochemistry 98:271–273

    Article  CAS  PubMed  Google Scholar 

  • Gebert A, Hach G, Bartels H (1992) Co-localization of vimentin and cytokeratins in M-cells of rabbit gut-associated lymphoid tissue (GALT). Cell Tissue Res 269:331–340

    Article  CAS  PubMed  Google Scholar 

  • Gebert A, Rothkotter HJ, Pabst R (1994) Cytokeratin 18 is an M-cell marker in porcine Peyer’s patches. Cell Tissue Res 276:213–221

    Article  CAS  PubMed  Google Scholar 

  • Gebert A, Willfuhr B, Pabst R (1995) The rabbit M-cell marker vimentin is present in epithelial cells of the tonsil crypt. Acta Otolaryngol 115:697–700

    Article  CAS  PubMed  Google Scholar 

  • Gebert A, Fassbender S, Werner K, Weissferdt A (1999) The development of M cells in Peyer’s patches is restricted to specialized dome-associated crypts. Am J Pathol 154:1573–1582

    CAS  PubMed  Google Scholar 

  • Gebert A, Steinmetz I, Fassbender S, Wendlandt KH (2004) Antigen transport into Peyer’s patches: increased uptake by constant numbers of M cells. Am J Pathol 164:65–72

    PubMed  Google Scholar 

  • Glaysher BR, Mabbott NA (2006) Isolated lymphoid follicle maturation induces the development of follicular dentritic cells. Immunology 120:336–344

    Article  PubMed  Google Scholar 

  • Goldman RD, Khuon S, Chou YH, Opal V, Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134:971–983

    Article  CAS  PubMed  Google Scholar 

  • Golovkina TV, Shlomchik M, Hannum L, Chervonsky A (1999) Organogenetic role of B lymphocytes in mucosal immunity. Science 286:1965–1968

    Article  CAS  PubMed  Google Scholar 

  • Haley PJ (2003) Species differences in the structure and function of the immune system. Toxicology 188:49–71

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64

    CAS  PubMed  Google Scholar 

  • Hathaway LJ, Kraehenbuhl JP (2000) The role of M cells in mucosal immunity. Cell Mol Life Sci 57:323–332

    Article  CAS  PubMed  Google Scholar 

  • Helfand BT, Chou YH, Shumaker DK, Goldman RD (2005) Intermediate filament proteins participate in signal transduction. Trends Cell Biol 15:568–570

    Article  CAS  PubMed  Google Scholar 

  • Hitotsumatsu O, Hamada H, Naganuma M, Inoue N, Ishii H, Hibi T, Ishikawa H (2005) Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine. J Gastroenterol 40:956–963

    Article  PubMed  Google Scholar 

  • Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki H, Ogawa C, Suda M (2002) Vimentin-positive cells in the villus epithelium of the rabbit small intestine. Histochem Cell Biol 117:363–370

    Article  CAS  PubMed  Google Scholar 

  • Jepson MA, Mason CM, Bennett MK, Simmons NL, Hirst BH (1992) Co-expression of vimentin and cytokeratins in M-cells of rabbit intestinal lymphoid follicle associated eptihelium. Histochem J 24:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jepson MA, Simmons NL, Hirst GL, Hirst BH (1993) Identification of M cells and their distribution in rabbit intestinal Peyer patches and appendix. Cell Tissue Res 273:127–136

    Article  CAS  PubMed  Google Scholar 

  • Jepson MA, Clark MA, Foster N, Mason CM, Bennett MK, Simmons NL, Hirst BH (1996) Targeting to intestinal M cells. J Anat 189:507–516

    PubMed  Google Scholar 

  • Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H (1996) Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 184:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Keren DF, Holt PS, Collins HH, Gemski P, Formal SB (1978) The role of Peyer’s patches in the local immune response of rabbit ileum to live bacteria. J Immunol 120:1892–1896

    CAS  PubMed  Google Scholar 

  • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault V (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952

    Article  CAS  PubMed  Google Scholar 

  • Kucharzik T, Lugering N, Rautenberg K, Lugering A, Schmidt MA, Stoll R, Domschke W (2000) Role of M cells in intestinal barrier function. Ann N Y Acad Sci 915:171–183

    Article  CAS  PubMed  Google Scholar 

  • Kyd JM, Cripps AW (2008) Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine 26:6221–6224

    Article  CAS  PubMed  Google Scholar 

  • Lelouard H, Sahuquet A, Reggio H, Montcourrier P (2001) Rabbit M cells and dome enterocytes are distinct cell lineages. J Cell Sci 114:2077–2083

    CAS  PubMed  Google Scholar 

  • Liebler-Tenorio EM, Pabst R (2006) MALT structure and function in farm animals. Vet Res 37:257–280

    Article  PubMed  Google Scholar 

  • Lorenz RG, Newberry RD (2004) Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann N Y Acad Sci 1029:44–57

    Article  CAS  PubMed  Google Scholar 

  • Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD (2003) Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol 170:5475–5482

    CAS  PubMed  Google Scholar 

  • Lügering A, Kucharzik T (2006) Induction of intestinal lymphoid tissue: the role of cryptopatches. Ann N Y Acad Sci 1072:210–217

    Article  PubMed  Google Scholar 

  • Macdonald TT (2003) The mucosal immune system. Parasite Immunol 25:235–246

    Article  CAS  PubMed  Google Scholar 

  • Mach J, Hshieh T, Hsieh D, Grubbs N, Chervonsky A (2005) Development of intestinal M cells. Immunol Rev 206:177–189

    Article  PubMed  Google Scholar 

  • Magalhaes JG, Tattoli I, Girardin SE (2007) The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol 19:106–115

    Article  CAS  PubMed  Google Scholar 

  • Man AL, Prieto-Garcia ME, Nicoletti C (2004) Improving M cell mediated transport across mucosal barriers: do certain bacteria hold the keys? Immunology 113:15–22

    Article  CAS  PubMed  Google Scholar 

  • Mayrhofer G, Brooks A (1995) Lymphopoieses in lymphocyte-filled villi in the small intestine of the rat. Clin Immunol Immunopathol 76:55

    Google Scholar 

  • Mayrhofer G, Moghaddami M, Murphy C (1999) Lymphocyte-filled villi (LFV): non-classical organized lymphoid tissues in the mucosa of the small intestine. Mucosal Immunol Update 7:9–13

    Google Scholar 

  • McDonald KG, McDonough JS, Newberry RD (2005) Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J Immunol 174:5720–5728

    CAS  PubMed  Google Scholar 

  • Miller H, Zhang J, Kuolee R, Patel GB, Chen W (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13:1477–1486

    CAS  PubMed  Google Scholar 

  • Miyazawa K, Aso V, Kanaya T, Kido T, Minashima T, Watanabe K, Ohwada V, Kitazawa H, Rose MT, Tahara K, Yamasaki T, Yamaguchi T (2006) Apoptotic process of porcine intestinal M cells. Cell Tissue Res 323:425–432

    Article  PubMed  Google Scholar 

  • Moghaddami M, Cummins A, Mayrhofer G (1998) Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115:1414–1425

    Article  CAS  PubMed  Google Scholar 

  • Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341

    Article  CAS  PubMed  Google Scholar 

  • Neutra MR (1998) Current concepts in mucosal immunity. V. Role of M-cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 274:785–791

    Google Scholar 

  • Neutra MR, Mantis NJ, Kraehenbuhl JP (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Immunol Nat 2:1004–1009

    Article  CAS  Google Scholar 

  • Newberry RD (2008) Intestinal lymphoid tissues: is variety an asset or a liability. Curr Opin Gastroenterol 24:121–128

    Article  PubMed  Google Scholar 

  • Newberry RD, Lorenz RG (2005) Organizing a mucosal defense. Immunol Rev 206:6–21

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti C (2000) Unsolved mysteries of intestinal M cells. Gut 47:735–739

    Article  CAS  PubMed  Google Scholar 

  • Niedergang F, Kraehenbuhl JP (2000) Much ado about M cells. Trends Cell Biol 10:137–141

    Article  CAS  PubMed  Google Scholar 

  • Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yang S, Hoffmann MW, Körner H, Bernhardt G, Pabst R, Förster R (2005) Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol 35:98–107

    Article  CAS  PubMed  Google Scholar 

  • Rautenberg K, Cichon C, Heyer G, Demel M, Schmidt MA (1996) Immunohistochemical characterization of the follicle-associated epithelium of Peyer’s patches: anti-cytokeratin 8 antibody (clone 4.1.18) as a molecular marker for rat M cells. Eur J Cell Biol 71:363–370

    CAS  PubMed  Google Scholar 

  • Regoli M, Bertelli E, Borghesi C, Nicoletti C (1995) Three-dimensional (3D) reconstruction of M cells in rabbit Peyer’s patches: definition of the intraepithelial compartment of the follicle-associated epithelium. Anat Rec 243:19–26

    Article  CAS  PubMed  Google Scholar 

  • Rosner AJ, Keren DF (1984) Demonstration of M cells in the specialized follicle-associated epithelium overlying isolated lymphoid follicles in gut. J Leukoc Biol 35:397–404

    CAS  PubMed  Google Scholar 

  • Shaykhiev R, Bals R (2007) Interactions between epithelial cells and leukocytes in immunity and tissue homeostasis. J Leukoc Biol 82:1–15

    Article  CAS  PubMed  Google Scholar 

  • Sierro F, Pringault E, Assman PS, Kraehenbuhl JP, Debard N (2000) Transient expression of M-cell phenotype by enterocyte-like cells of the follicle-associated epithelium of mouse Peyer’s patches. Gastroenterology 119:734–743

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Gonda T (2004) Cellular kinetics of villous epithelial cells and M cells in rabbit small intestine. J Vet Med Sci 66:689–693

    Article  PubMed  Google Scholar 

  • Veneable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408

    Article  Google Scholar 

  • Wang C, McDonald KG, McDonald JS, Newberry RD (2006) Murine isolated lymphoid follicles contain follicular B lymphocytes with a mucosal phenotype. Am J Physiol Gastrointest Liver Physiol 291:595–604

    Article  Google Scholar 

  • Yasuda M, Jenne CN, Kennedy LJ, Reynolds JD (2006) The sheep and cattle Peyer’s patch as a site of B-cell development. Vet Res 37:401–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feyzullah Beyaz.

Additional information

The chemical materials used in this study were supplied under projects financially supported by the Scientific Research Projects Commission of Erciyes University (EÜBAP VA-03-11) and the Scientific Research Coordination Department of Kırıkkale University (2007-24).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyaz, F., Ergün, E., Bayraktaroğlu, A.G. et al. Identification of intestinal M cells in isolated lymphoid follicles and Peyer’s patches of the Angora rabbit. Cell Tissue Res 341, 417–427 (2010). https://doi.org/10.1007/s00441-010-1005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1005-5

Keywords

Navigation