Skip to main content
Log in

Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Secretory and motility reflexes are evoked by physiological stimuli in the isolated rat distal colon, which is therefore expected to contain intrinsic primary afferent (sensory) neurons. Dogiel type II neurons (putative intrinsic primary afferent neurons) exhibit several long processes emerging from large oval or round cell bodies. This study has examined the immunohistochemical characteristics of type II neurons in the submucosal plexus of rat distal colons by using whole-mount preparations. Neuronal cell bodies positive for both substance P (SP) and calretinin have been observed in colchicine-treated rats. Neurofilament 200 immunostaining has confirmed the type II morphology of SP-positive neurons. Moreover, all submucosal type II neurons identified by neurofilament 200 immunoreactivity are positive for calretinin. Calcitonin gene-related peptide (CGRP)-positive neurons in the submucosal plexus are distinct from type II neurons because they are negative for calretinin and have smaller cell bodies than the SP-positive submucosal type II neurons. Most (73%) of the submucosal neurons including type II neurons exhibit immunoreactivity for the neurokinin-1 receptor (NK1R), a receptor for SP, on the surface of cell bodies. Immunoreactivity for the EP3 receptor (EP3R), a receptor for prostaglandin E2, has been detected in 51% of submucosal neurons including type II neurons. Thus, submucosal type II neurons in the rat distal colon are immunopositive for SP/calretinin but immunonegative for CGRP. SP released from submucosal type II neurons probably acts via NK1Rs on type II and non-type II submucosal neurons to mediate intrinsic reflexes. EP3R-positive submucosal type II neurons may be potential targets of prostaglandin E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bertrand PP, Kunze WA, Bornstein JC, Furness JB, Smith ML (1997) Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am J Physiol 273:G422–G435

    CAS  PubMed  Google Scholar 

  • Brehmer A, Croner R, Dimmler A, Papadopoulos T, Schrödl F, Neuhuber W (2004) Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton Neurosci 112:49–59

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti R, Grandis A, Bombardi C, Lucchi ML, Dal Lago DT, Bortolami R, Furness JB (2006) Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell Tissue Res 323:183–196

    Article  CAS  PubMed  Google Scholar 

  • Christofi FL, Wunderlich J, Yu JG, Wang YZ, Xue J, Guzman J, Javed N, Cooke H (2004) Mechanically evoked reflex electrogenic chloride secretion in rat distal colon is triggered by endogenous nucleotides acting at P2Y1, P2Y2, and P2Y4 receptors. J Comp Neurol 469:16–36

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ (1998) “Enteric tears”: chloride secretion and its neural regulation. News Physiol Sci 13:269–274

    CAS  PubMed  Google Scholar 

  • Cooke HJ, Wang YZ, Rogers R (1993) Coordination of Cl secretion and contraction by a histamine H2-receptor agonist in guinea pig distal colon. Am J Physiol 265:G973–G978

    CAS  PubMed  Google Scholar 

  • Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47 (Suppl 4):iv15–iv19

    PubMed  Google Scholar 

  • Diener M, Rummel W (1990) Distension-induced secretion in the rat colon: mediation by prostaglandins and submucosal neurons. Eur J Pharmacol 178:47–57

    Article  CAS  PubMed  Google Scholar 

  • Diener M, Bridges RJ, Knobloch SF, Rummel W (1988) Neuronally mediated and direct effects of prostaglandins on ion transport in rat colon descendens. Naunyn Schmiedebergs Arch Pharmacol 337:74–78

    CAS  PubMed  Google Scholar 

  • Ekblad E, Ekman R, Håkanson R, Sundler F (1988) Projections of peptide-containing neurons in rat colon. Neuroscience 27:655–674

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004a) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004b) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    Article  CAS  PubMed  Google Scholar 

  • Harrington AM, Hutson JM, Southwell BR (2005) Immunohistochemical localization of substance P NK1 receptor in guinea pig distal colon. Neurogastroenterol Motil 17:727–737

    Article  CAS  PubMed  Google Scholar 

  • Hens J, Schrödl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans JP (2000) Mucosal projections of enteric neurons in the porcine small intestine. J Comp Neurol 421:429–436

    Article  CAS  PubMed  Google Scholar 

  • Itasaka S, Shiratori K, Takahashi T, Ishikawa M, Kaneko K, Suzuki Y (1992) Stimulation of intramural secretory reflex by luminal distension pressure in rat distal colon. Am J Physiol 263:G108–G114

    CAS  PubMed  Google Scholar 

  • Karlström L (1986) Evidence of involvement of the enteric nervous system in the effects of sodium deoxycholate on small-intestinal transepithelial fluid transport and motility. Scand J Gastroenterol 21:321–330

    Article  PubMed  Google Scholar 

  • Kunze WA, Bornstein JC, Furness JB (1995) Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66:1–4

    Article  CAS  PubMed  Google Scholar 

  • Larsson MH, Sapnara M, Thomas EA, Bornstein JC, Lindström E, Svensson DJ, Sjövall H (2008) Pharmacological analysis of components of the change in transmural potential difference evoked by distension of rat proximal small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 294:G165–G173

    Article  CAS  PubMed  Google Scholar 

  • Lomax AE, Furness JB (2000) Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Res 302:59–72

    Article  CAS  PubMed  Google Scholar 

  • Lomax AE, Bertrand PP, Furness JB (1998) Identification of the populations of enteric neurons that have NK1 tachykinin receptors in the guinea-pig small intestine. Cell Tissue Res 294:27–33

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Southwell BR, Ding YQ, Shigemoto R, Mizuno N, Furness JB (1997) Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell Tissue Res 289:1–9

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R (2009) Characterisation of calcitonin gene-related peptide-immunoreactive neurons in the myenteric plexus of rat colon. Cell Tissue Res 337:37–43

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Sugimoto Y, Katsuyama M, Oida H, Tsuboi K, Kishi K, Kinoshita Y, Negishi M, Chiba T, Narumiya S, Ichikawa A (1997) Cellular localization of mRNAs for prostaglandin E receptor subtypes in mouse gastrointestinal tract. Am J Physiol 272:G681–G687

    CAS  PubMed  Google Scholar 

  • Nakajima K, Tooyama I, Yasuhara O, Aimi Y, Kimura H (2000) Immunohistochemical demonstration of choline acetyltransferase of a peripheral type (pChAT) in the enteric nervous system of rats. J Chem Neuroanat 18:31–40

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H, Negishi M (2000) Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J Comp Neurol 421:543–569

    Article  CAS  PubMed  Google Scholar 

  • Northey A, Denis D, Cirino M, Metters KM, Nantel F (2000) Cellular distribution of prostanoid EP receptors mRNA in the rat gastrointestinal tract. Prostaglandins Other Lipid Mediat 62:145–156

    Article  CAS  PubMed  Google Scholar 

  • Patton D, O’Reilly M, Vanner S (2005) Sensory peptide neurotransmitters mediating mucosal and distension evoked neural vasodilator reflexes in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 289:G785–G790

    Article  CAS  PubMed  Google Scholar 

  • Read NW, Smallwood RH, Levin RJ, Holdsworth CD, Brown BH (1977) Relationship between changes in intraluminal pressure and transmural potential difference in the human and canine jejunum in vivo. Gut 18:141–151

    Article  CAS  PubMed  Google Scholar 

  • Scheuermann DW, Stach W, De Groodt-Lasseel MH, Timmermans JP (1987) Calcitonin gene-related peptide in morphologically well-defined type II neurons of the enteric nervous system in the porcine small intestine. Acta Anat (Basel) 129:325–328

    Article  CAS  Google Scholar 

  • Song ZM, Costa M, Brookes SJ (1998) Projections of submucous neurons to the myenteric plexus in the guinea pig small intestine. J Comp Neurol 399:255–268

    Article  CAS  PubMed  Google Scholar 

  • Sternini C, Su D, Gamp PD, Bunnett NW (1995) Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. J Comp Neurol 358:531–540

    Article  CAS  PubMed  Google Scholar 

  • Su X, Lashinger ES, Leon LA, Hoffman BE, Hieble JP, Gardner SD, Fries HE, Edwards RM, Li J, Laping NJ (2008) An excitatory role for peripheral EP3 receptors in bladder afferent function. Am J Physiol Renal Physiol 295:F585–F594

    Article  CAS  PubMed  Google Scholar 

  • Timmermans JP, Scheuermann DW, Barbiers M, Adriaensen D, Stach W, Van Hee R, De Groodt-Lasseel MH (1992) Calcitonin gene-related peptide-like immunoreactivity in the human small intestine. Acta Anat (Basel) 143:48–53

    Article  CAS  Google Scholar 

  • Vanner S, Macnaughton WK (2004) Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol Motil 16(Suppl 1):39–43

    Article  PubMed  Google Scholar 

  • Weber E, Neunlist M, Schemann M, Frieling T (2001) Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J Physiol (Lond) 536:741–751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Terumasa Komuro (Waseda University) for valuable suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retsu Mitsui.

Additional information

This study was supported by a Waseda University Grant for Special Research Projects (2009B-285).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsui, R. Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon. Cell Tissue Res 340, 257–265 (2010). https://doi.org/10.1007/s00441-010-0954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0954-z

Keywords

Navigation