Skip to main content

Advertisement

Log in

Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression of locomotor activity (masking), and pupillary light reflex. Two neurotransmitters have been identified in ipRGCs, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). To date, little is known about their release and interplay. Here, we describe the presence and co-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably released from the same nerve terminals. Furthermore, we conclude that VGLUT2 is the preferred subtype of vesicular transporter used by these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3v:

Third ventricle

BW:

Body weight

CNS:

Central nervous system

CtB:

Choleratoxin subunit B

dLGN:

Dorsolateral geniculate nucleus

GCL:

Ganglion cell layer

IGL:

Intergeniculate leaflet

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

ipRGC:

Intrinsically photosensitive retinal ganglion cell

ir:

Immunoreactivity/immunoreactive

NFL:

Nerve fiber layer

NIF:

Non-image-forming

oc:

Optic chiasm

ON:

Overnight

OPN:

Olivary pretectal nucleus

PAC1R:

PACAP receptor 1

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PLR:

Pupillary light reflex

RGC:

Retinal ganglion cell

RHT:

Retino-hypothalamic tract

SCN:

Suprachiasmatic nucleus

VGLUT:

Vesicular glutamate transporter

VIP:

Vasoactive intestinal peptide

vLGN:

Ventrolateral geniculate nucleus

References

  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    Article  PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom AL, Hannibal J, Hindersson P, Fahrenkrug J (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci 18:2552–2562

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J (1993) Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 5:368–381

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci USA 96:13468–13473

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754

    Article  CAS  PubMed  Google Scholar 

  • Engelund A, Hannibal J, Fahrenkrug J (2009) Pituitary adenylate cyclase activating peptide (PACAP) signalling in the pupillary light response. IOVS, ARVO E-abstract 2560. Ref Type: Abstract

  • Fremeau J, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Furuta T, Kaneko T (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol 435:379–387

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, Okamoto K, Kaneko T (2003) Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 465:234–249

    Article  CAS  PubMed  Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165

    Article  CAS  PubMed  Google Scholar 

  • Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153

    Article  PubMed  Google Scholar 

  • Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    Article  PubMed  Google Scholar 

  • Hannibal J (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 309:73–88

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J (2006) Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol 251:1–39

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Fahrenkrug J (2004) Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316:99–113

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Fahrenkrug J (2006) Neuronal input pathways to the brain’s biological clock and their functional significance. Adv Anat Embryol Cell Biol 182:1–71

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55:133–148

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD (1997) Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J Neurosci 17:2637–2644

    CAS  PubMed  Google Scholar 

  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191

    PubMed  Google Scholar 

  • Hannibal J, Brabet P, Fahrenkrug J (2008) Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol 295:R2050–2058

    Google Scholar 

  • Harrington ME, Hoque S, Hall A, Golombek D, Biello S (1999) Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci 19:6637–6642

    CAS  PubMed  Google Scholar 

  • Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451

    Article  PubMed  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El MS (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  • Hrabovszky E, Turi GF, Liposits Z (2005) Presence of vesicular glutamate transporter-2 in hypophysiotropic somatostatin but not growth hormone-releasing hormone neurons of the male rat. Eur J Neurosci 21:2120–2126

    Article  PubMed  Google Scholar 

  • Johnson J, Sherry DM, Liu X, Fremeau RT Jr, Seal RP, Edwards RH, Copenhagen DR (2004) Vesicular glutamate transporter 3 expression identifies glutamatergic amacrine cells in the rodent retina. J Comp Neurol 477:386–398

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Fremeau RT Jr, Duncan JL, Renteria RC, Yang H, Hua Z, Liu X, LaVail MM, Edwards RH, Copenhagen DR (2007) Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci 27:7245–7255

    Article  CAS  PubMed  Google Scholar 

  • Juhl F, Hannibal J, Fahrenkrug J (2007) Photic induction of c-Fos in enkephalin neurons of the rat intergeniculate leaflet innervated by retinal PACAP fibres. Cell Tissue Res 329:491–502

    Article  CAS  PubMed  Google Scholar 

  • Jusuf PR, Lee SC, Hannibal J, Grunert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26:2906–2921

    Article  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    Article  CAS  PubMed  Google Scholar 

  • Kiss J, Halasz B, Csaki A, Liposits Z, Hrabovszky E (2007) Vesicular glutamate transporter 2 protein and mRNA containing neurons in the hypothalamic suprachiasmatic nucleus of the rat. Brain Res Bull 74:397–405

    Article  CAS  PubMed  Google Scholar 

  • Kiss J, Csaki A, Csaba Z, Halasz B (2008) Synaptic contacts of vesicular glutamate transporter 2 fibres on chemically identified neurons of the hypothalamic suprachiasmatic nucleus of the rat. Eur J Neurosci 28:1760–1774

    Article  PubMed  Google Scholar 

  • Land PW, Kyonka E, Shamalla-Hannah L (2004) Vesicular glutamate transporters in the lateral geniculate nucleus: expression of VGLUT2 by retinal terminals. Brain Res 996:251–254

    Article  CAS  PubMed  Google Scholar 

  • Legradi G, Hannibal J, Lechan RM (1997) Association between pituitary adenylate cyclase-activating polypeptide and thyrotropin-releasing hormone in the rat hypothalamus. J Chem Neuroanat 13:265–279

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JM, Fried G, Fahrenkrug J, Holmstedt B, Hökfelt T, Lagercrantz H, Lundgren G, Anggard A (1981) Subcellular fractionation of cat submandibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide (VIP). Neuroscience 6:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC,Orser BA, MacDonald JF (2005) Modulation of NMDA receptors by pituitary adenylatecyclase activating peptide in CA1 neurons requires Gαq,protein kinase C, and activation of Src. J Neurosci 25:11374–11384

    Article  CAS  PubMed  Google Scholar 

  • Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416

    Article  PubMed  Google Scholar 

  • Ostergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48:3812–3820

    Article  PubMed  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Article  CAS  PubMed  Google Scholar 

  • Piggins HD, Cutler DJ (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J Endocrinol 177:7–15

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    Article  CAS  PubMed  Google Scholar 

  • Sakata-Haga H, Kanemoto M, Maruyama D, Hoshi K, Mogi K, Narita M, Okado N, Ikeda Y, Nogami H, Fukui Y, Kojima I, Takeda J, Hisano S (2001) Differential localization and colocalization of two neuron-types of sodium-dependent inorganic phosphate cotransporters in rat forebrain. Brain Res 902:143–155

    Article  CAS  PubMed  Google Scholar 

  • Sanggaard KM, Hannibal J, Fahrenkrug J (2003) Serotonin inhibits glutamate- but not PACAP-induced per gene expression in the rat suprachiasmatic nucleus at night. Eur J Neurosci 17:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Pickard GE (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 20:601–610

    Article  PubMed  Google Scholar 

  • Stella SL Jr, Li S, Sabatini A, Vila A, Brecha NC (2008) Comparison of the ontogeny of the vesicular glutamate transporter 3 (VGLUT3) with VGLUT1 and VGLUT2 in the rat retina. Brain Res 1215:20–29

    Article  CAS  PubMed  Google Scholar 

  • Takamori S (2006) VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci Res 55:343–351

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  • Varoqui H, Schafer MKH, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    CAS  PubMed  Google Scholar 

  • Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclaseactivatingpolypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9638

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Engelund.

Additional information

This work was supported by the Danish Biotechnology Center for Cellular Communication. Anna Engelund was the recipient of a University of Copenhagen, LIFE PhD Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelund, A., Fahrenkrug, J., Harrison, A. et al. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res 340, 243–255 (2010). https://doi.org/10.1007/s00441-010-0950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0950-3

Keywords

Navigation