Skip to main content

Advertisement

Log in

Photic induction of c-Fos in enkephalin neurons of the rat intergeniculate leaflet innervated by retinal PACAP fibres

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The brain’s biological clock, located in the suprachiasmatic nucleus (SCN), is synchronised with the cyclic environment by photic and non-photic cues. Photic information to the SCN is mediated by pituitary adenylate-cyclase-activating polypeptide (PACAP)-containing retinal ganglion cells (RGCs), whereas non-photic input originates primarily from neuropeptide Y (NPY) cells in the ipsilateral thalamic intergeniculate leaflet (IGL). RGCs also seem to project to the IGL, indicating a role for this structure in the integration of photic and non-photic inputs related to the resetting of the biological clock. In the present study, we have used anterograde tracing from both eyes, bilateral eye enucleation, double-immunofluorescence histochemistry, high-resolution confocal laser scanning microscopy and three-dimensional computer analysis to show that (1) PACAP-containing RGCs project to the IGL and are the only source for the PACAP-immunoreactive fibres in the IGL; (2) a few NPY-containing neurons in the IGL are innervated by PACAP-containing retinal nerve fibres and the contacts are both axodendritic and axosomatic; (3) most enkephalin-immunoreactive neurons in the IGL are innervated by PACAP-containing retinal afferents and the contacts are mainly axodendritic; (4) light stimulation at various time points activates (as evidenced by c-Fos induction) enkephalin-positive neurons but not NPY-immunoreactive neurons. The findings suggest that PACAP-immunoreactive retinal afferents in the IGL primarily innervate enkephalin-immunoactive neurons and that the enkephalin-containing neurons, which project locally and to the contralateral IGL, are activated by light independent of diurnal time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Rusak B (1994) Physiological mechanism regulating photic induction of Fos-like protein in hamster suprachiasmatic nucleus. Neurosci Biobehav Rev 18:531–536

    Article  PubMed  CAS  Google Scholar 

  • Albers HE, Ferris CF (1984) Neuropeptide Y: role in light-dark cycle entrainment of hamster circadian rhythms. Neurosci Lett 50:163–168

    Article  PubMed  CAS  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  PubMed  CAS  Google Scholar 

  • Biello SM, Mrosovsky N (1996) Phase response curves to neuropeptide Y in wildtype and tau mutant hamsters. J Biol Rhythms 11:27–34

    Article  PubMed  CAS  Google Scholar 

  • Biello SM, Golombeck DA, Schak KM, Harrington ME (1997) Circadian phase shifts to neuropeptide Y in vitro: cellular communication and signal transaction. J Neurosci 17:8468–8475

    PubMed  CAS  Google Scholar 

  • Blasiak T, Lewandowski MH (2004) Identification of intergeniculate leaflet slow bursting cells projection target-an antidromic study in the rat. FENS Abstract 2:A024.03

    Google Scholar 

  • Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol 284:135–147

    Article  PubMed  CAS  Google Scholar 

  • Card JP, Brecha N, Karten HJ, Moore RY (1981) Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. J Neurosci 1:1289–1303

    PubMed  CAS  Google Scholar 

  • Cheng H-YM, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM (2004) Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43:715–728

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS, Foster RG (1992) Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. J Comp Neurol 324:135–142

    Article  PubMed  CAS  Google Scholar 

  • Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:698–699

    Article  CAS  Google Scholar 

  • Edelstein K, Beaule C, D’Abramo R, Amir S (2000) Expression profiles of JunB and c-Fos proteins in the rat circadian system. Brain Res 870:54–65

    Article  PubMed  CAS  Google Scholar 

  • Fetissov SO, Byrne LC, Hassani H, Ernfors P, Hökfelt T (2004) Characterization of neuropeptide Y Y2 and Y5 receptor expression in the mouse hypothalamus. J Comp Neurol 470:256–265

    Article  PubMed  CAS  Google Scholar 

  • Gamble KL, Ehlen JC, Albers HE (2005) Circadian control during the day and night: role of neuropeptide Y Y5 receptors in the suprachiasmatic nucleus. Brain Res Bull 65:513–519

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J (2006) Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol 251:1–39

    PubMed  CAS  Google Scholar 

  • Hannibal J, Fahrenkrug J (2004) Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316:99–113

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Fahrenkrug J (2006) Neuronal input pathways to the brain’s biological clock and their functional significance. Adv Embryol Cell Biol 182:1–71

    Article  CAS  Google Scholar 

  • Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept 55:133–148

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22 (RC191):1–7

    Google Scholar 

  • Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727

    Article  PubMed  CAS  Google Scholar 

  • Harrington ME, Schak KM (2000) Neuropeptide Y phase advances the in vitro hamster circadian clock during the subjective day with no effect on phase during the subjective night. Can J Physiol Pharmacol 78:87–92

    Article  PubMed  CAS  Google Scholar 

  • Harrington ME, Nance DM, Rusak B (1985) Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res Bull 15:465–472

    Article  PubMed  Google Scholar 

  • Hastings MH, Duffield GE, Smith EJ, Maywood ES, Ebling FJ (1998) Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol Int 15:425–445

    PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic phosensitivity. Science 295:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Hickey TL, Spear PD (1976) Retinogeniculate projections in hooded and albino rats: an autoradiographic study. Exp Brain Res 24:523–529

    Article  PubMed  CAS  Google Scholar 

  • Laemle LK, Fugaro C, Bentley T (1993) The geniculohypothalamic pathway in a congenitally anopthalmic mouse. Brain Res 618:352–357

    Article  PubMed  CAS  Google Scholar 

  • Lall GS, Biello SM (2003a) Attenuation of circadian light induced phase advances and delays by neuropeptide Y and a neuropeptide Y Y1/Y5 receptor agonist. Neuroscience 119:611–618

    Article  PubMed  CAS  Google Scholar 

  • Lall GS, Biello SM (2003b) Neuropeptide Y (NPY) attenuates photic phase shifts via the NPY Y5 receptor subtype. Soc Neurosci 510:14

    Google Scholar 

  • Larsen PJ, Kristensen P (1998) Distribution of neuropeptide Y receptor expression in the rat suprachiasmatic nucleus. Mol Brain Res 60:69–76

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski MH, Blasiak T, Domoslawski J, Wolkowska A (2000) Ultradian rhythmic neuronal oscillation in the intergeniculate leaflet. Neuroreport 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski MH, Blasiak T, Blasiak A (2002) Are ultra-slow isoperiodic oscillations in rat intergeniculate leaflet neurons dependent on reciprocal connection with its contralaterally located counterpart? Neurosci Lett 330:243–246

    Article  PubMed  CAS  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    Article  PubMed  CAS  Google Scholar 

  • Mantyh PW, Kemp JA (1983) The distribution of putative neurotransmitters in the lateral geniculate nucleus of the rat. Brain Res 288:344–348

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD (1992) The organization of the crossed geniculogeniculate pathway of the rat: a Phaseolus vulgaris-leucoagglutinin study. Neuroscience 48:953–962

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD (1994) Analysis of the efferent projections of the lateral geniculate nucleus with special reference to the innervation of the subcommissural organ and related areas. Cell Tissue Res 277:437–445

    PubMed  CAS  Google Scholar 

  • Mikkelsen JD, O’Hare MM (1991) An immunohistochemical and chromatographic analysis of the distribution and processing of proneuropeptide Y in the rat suprachiasmatic nucleus. Neurosci Lett 12:177–185

    CAS  Google Scholar 

  • Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403–430

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150:112–116

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Gustafson EL, Card JP (1984) Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y. Cell Tissue Res 236:41–46

    Article  PubMed  CAS  Google Scholar 

  • Morin LP (1994) The circadian visual system. Brain Res Rev 19:102–107

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain Res Rev 51:1–60

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Blanchard JH (2001) Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J Comp Neurol 437:79–90

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Blanchard J, Moore RY (1992) Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Vis Neurosci 8:219–230

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465:401–416

    Article  PubMed  Google Scholar 

  • Ohara PT, Lieberman AR, Hunt SP, Wu JY (1983) Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat; immunohistochemical studies by light and electron microscopy. Neuroscience 8:189–211

    Article  PubMed  CAS  Google Scholar 

  • Park HT, Baek SY, Kim BS, Kim JB, Kim JJ (1993) Profile of Fos-like immunoreactivity induction by light stimuli in the intergeniculate leaflet is different from that of the suprachiasmatic nucleus. Brain Res 610:334–339

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd ed. Academic Press, San Diego

    Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    Article  PubMed  CAS  Google Scholar 

  • Reuss S, Decker K (1997) Anterograde tracing of retinohypothalamic afferents with fluoro-gold. Brain Res 745:197–204

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Peters A (1975) An autoradiographic study of the projections from the lateral geniculate body of the rat. Brain Res 92:341–368

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1994) SAS/STAT user’s guide, 4th version, 6th edn. SAS Institute, Cary, N.C., USA

    Google Scholar 

  • Shindler KS, Roth KA (1996) Double immunofluorescent staining using two unconjugated primary antisera raised in the same species. J Histochem Cytochem 44:1331–1335

    PubMed  CAS  Google Scholar 

  • Soscia SJ, Harrington ME (2005) Neuropeptide Y does not reset the circadian clock in NPY Y2-/- mice. Neurosci Lett 373:175–178

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J Comp Neurol 156:143–163

    Article  PubMed  CAS  Google Scholar 

  • Takatsuji K, Miguel-Hidalgo J-J, Tohyama M (1991) Retinal fibers make synaptic contact with neuropeptide Y and enkephalin immunoreactive neurons in the intergeniculate leaflet of the rat. Neurosci Lett 125:73–76

    Article  PubMed  CAS  Google Scholar 

  • Thankachan S, Rusak B (2005) Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J Neurosci 25:9195–9204

    Article  PubMed  CAS  Google Scholar 

  • Vrang N, Mrosovsky N, Mikkelsen JD (2003) Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull 59:267–288

    Article  PubMed  Google Scholar 

  • Wadhwa S, Rath S, Jotwani G, Bijlani V (1990) Development of substance P, Leu-enkephalin and serotonin profiles in the lateral geniculate nuclear complex of albino rat. Neurosci Lett 120:146–150

    Article  PubMed  CAS  Google Scholar 

  • Warren EJ, Allen CN, Brown RL, Robinson D (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17:1727–1735

    Article  PubMed  Google Scholar 

  • Weber ET, Rea MA (1997) Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters. Neurosci Lett 231:159–162

    Article  PubMed  CAS  Google Scholar 

  • Wolak ML, deJoseph R, Cator AD, Mokashi AS, Brownfield MS, Urban JH (2003) Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 464:285–311

    Article  PubMed  CAS  Google Scholar 

  • Woldbye DP, Greisen MH, Bolwig TG, Larsen PJ, Mikkelsen JD (1997) Prolonged induction of c-fos in neuropeptide Y- and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation. J Neurosci 17:8468–8475

    Google Scholar 

  • Yannielli PC, Harrington ME (2001) The neuropeptide Y Y5 receptor mediates the blockade of “photic-like” NMDA-induced phase shifts in the golden hamster. J Neurosci 14:5367–5373

    Google Scholar 

  • Yannielli PC, Harrington ME (2004) Let there be “more” light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 74:59–76

    Article  PubMed  CAS  Google Scholar 

  • Zhang DX, Rusak B (1989) Photic sensitivity of geniculate neurons that project to the suprachiasmatic nuclei or the contralateral geniculate. Brain Res 504:161–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of Anita Hansen is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fahrenkrug.

Additional information

This study was supported by the Danish Biotechnology Centre for Cellular Communication and The Danish Medical Research Council (no. 22-04-0667).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhl, F., Hannibal, J. & Fahrenkrug, J. Photic induction of c-Fos in enkephalin neurons of the rat intergeniculate leaflet innervated by retinal PACAP fibres. Cell Tissue Res 329, 491–502 (2007). https://doi.org/10.1007/s00441-007-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0422-6

Keywords

Navigation