Skip to main content

Advertisement

Log in

PKC inhibition increases gap junction intercellular communication and cell adhesion in human neuroblastoma

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Gap junction intercellular communication and cell–cell adhesion are essential for maintaining a normal cellular phenotype, including the control of growth and proliferation. Loss of either cell–cell adhesion or communication is common in cancers, while restoration of function is associated with tumor suppression. Protein kinase C (PKC) isozymes regulate a broad spectrum of cellular functions including growth and proliferation, and their overexpression has been correlated with carcinogenesis. Consequently, PKC inhibitors are currently undergoing clinical trials as an anti-cancer agents although the precise cellular alterations induced by PKC inhibitors remain to be elucidated. In the current study, the effects of PKC inhibitors on cell interactions were investigated using human neuroblastoma (IMR32, SKNMC, and SHSY-5Y) cell lines. An analysis of intercellular communication revealed an increase in gap junctional coupling with PKC inhibition. The observed increase in coupling was not associated with a change in Connexin43 distribution or an alteration of phosphorylation status of the protein. There was also an increase in cell–cell adhesion with PKC inhibitor treatment as indicated by a cell aggregation assay. Therefore, the growth suppressive abilities of PKC inhibition on tumors may be due to the cancer suppressive effects of increased gap junction intercellular communication and cell–cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61:514–523

    Article  CAS  PubMed  Google Scholar 

  • Akoyev V, Takemoto DJ (2007) ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal 19:958–967

    Article  CAS  PubMed  Google Scholar 

  • Arnold JM, Phipps MW, Chen J, Phipps J (2005) Cellular sublocalization of Cx43 and the establishment of functional coupling in IMR-32 neuroblastoma cells. Mol Carcinog 42:159–169

    Article  CAS  PubMed  Google Scholar 

  • Atkinson MM, Lampe PD, Lin HH, Kollander R, Li XR, Kiang DT (1995) Cyclic AMP modifies the cellular distribution of connexin43 and induces a persistent increase in the junctional permeability of mouse mammary tumor cells. J Cell Sci 108:3079–3090

    CAS  PubMed  Google Scholar 

  • Basu A, Mohanty S, Sun B (2001) Differential sensitivity of breast cancer cells to tumor necrosis factor-α: involvement of protein kinase C. Biochem Biophys Res Commun 280:883–891

    Article  CAS  PubMed  Google Scholar 

  • Belliveau DJ, Naus CC (1994) Cortical type 2 astrocytes are not dye coupled nor do they express the major gap junction genes found in the central nervous system. Glia 12:24–34

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W (1995) E-cadherin as a tumor (invasion) suppressor gene. Bioessays 17:97–99

    Article  CAS  PubMed  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  CAS  PubMed  Google Scholar 

  • Carter CA (2000) Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets 1:163–183

    Article  CAS  PubMed  Google Scholar 

  • Carystinos GD, Alaoui-Jamali MA, Phipps J, Yen L, Batist G (2001) Upregulation of gap junctional intercellular communication and connexin 43 expression by cyclic-AMP and all-trans-retinoic acid is associated with glutathione depletion and chemosensitivity in neuroblastoma cells. Cancer Chemother Pharmacol 47:126–132

    Article  CAS  PubMed  Google Scholar 

  • Cesen-Cummings K, Fernstrom MJ, Malkinson AM, Ruch RJ (1998) Frequent reduction of gap junctional intercellular communication and connexin43 expression in human and mouse lung carcinoma cells. Carcinogenesis 19:61–67

    Article  CAS  PubMed  Google Scholar 

  • Chmura SJ, Dolan ME, Cha A, Mauceri HJ, Kufe DW, Weichselbaum RR (2000) In vitro and in vivo activity of protein kinase c inhibitor chelerythrine chloride induces tumor cell toxicity and growth delay in vivo. Clin Cancer Res 6:737–742

    CAS  PubMed  Google Scholar 

  • Delannoy P, Lemonnier J, Hay E, Modrowski D, Marie PJ (2001) Protein kinase C-dependent upregulation of n-cadherin expression by phorbol ester in human calvaria osteoblasts. Exp Cell Res 269:154–161

    Article  CAS  PubMed  Google Scholar 

  • el Aoumari A, Dupont E, Fromaget C, Jarry T, Briand JP, Kreitman B, Gros D (1991) Immunolocalization of an extracellular domain of connexin43 in rat heart gap junctions. Eur J Cell Biol 56:391–400

    CAS  PubMed  Google Scholar 

  • Ewing CM, Ru N, Morton RA, Robinson JC, Wheelock MJ, Johnson KR, Barrett JC, Isaacs WB (1995) Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correlation with re-expression of alpha-catenin and restoration of E-cadherin function. Cancer Res 55:4813–4817

    CAS  PubMed  Google Scholar 

  • Figarella-Branger DF, Durbec PL, Rougon GN (1990) Differential spectrum of expression of neural cell adhesion molecule isoforms and L1 adhesion molecules on human neuroectodermal tumors. Cancer Res 50:6364–6370

    CAS  PubMed  Google Scholar 

  • Foote CI, Zhou L, Zhu X, Nicholson BJ (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Gao RN, Levy IG, Woods WG, Coombs BA, Gaudette LA, Hill GB (1997) Incidence and mortality of neuroblastoma in Canada compared with other childhood cancers. Cancer Causes Control 8:745–754

    Article  CAS  PubMed  Google Scholar 

  • Ghadimi BM, Behrens J, Hoffmann I, Haensch W, Birchmeier W, Schlag PM (1999) Immunohistological analysis of E-cadherin, [alpha]-, [beta]-and [gamma]-catenin expression in colorectal cancer: implications for cell adhesion and signaling. Eur J Cancer 35:60–65

    Article  CAS  PubMed  Google Scholar 

  • Goldberg GS, Bechberger JF, Naus CC (1995) A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechniques 18:490–497

    CAS  PubMed  Google Scholar 

  • Goldenberg RC, Fortes FS, Cristancho JM, Morales MM, Franci CR, Varanda WA, Campos de Carvalho AC (2003) Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. J Endocrinol 177:327–335

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, Xu CE, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7:861–870

    CAS  PubMed  Google Scholar 

  • Huang RP, Hossain MZ, Sehgal A, Boynton AL (1999) Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70:21–24

    Article  CAS  PubMed  Google Scholar 

  • Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16:5686–5698

    Article  CAS  PubMed  Google Scholar 

  • Jimenez T, Fox WP, Galipeau J, Naus CCG, Belliveau DJ (2006) Connexin overexpression differentially suppresses glioma growth and contributes to the bystander effect following hsv-thymidine kinase gene therapy. Cell Commun Adhes 13:79–92

    Article  CAS  PubMed  Google Scholar 

  • Keane RW, Mehta PP, Rose B, Honig LS, Loewenstein WR, Rutishauser U (1988) Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro. J Cell Biol 106:1307–1319

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Suzuki K, Sagara T, Nishida T, Yamamoto T, Kitazawa Y (2000) Regulation of connexin phosphorylation and cell-cell coupling in trabecular meshwork cells. Invest Ophthalmol Vis Sci 41:2222–2228

    CAS  PubMed  Google Scholar 

  • King TJ, Lampe PD (2004) The gap junction protein connexin32 is a mouse lung tumor suppressor. Cancer Res 64:7191–7196

    Article  CAS  PubMed  Google Scholar 

  • Laird DW (1996) The life cycle of a connexin: gap junction formation, removal, and degradation. J Bioenerg Biomembranes 28:311–318

    Article  CAS  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  PubMed  Google Scholar 

  • Laird DW, Castillo M, Kasprzak L (1995) Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin a-treated rat mammary tumor cells. J Cell Biol 131:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  CAS  PubMed  Google Scholar 

  • Lampe PD, Cooper CD, King TJ, Burt JM (2006) Analysis of connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119:3435–3442

    Article  CAS  PubMed  Google Scholar 

  • Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000) Phosphorylation of connexin43 on serine 368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512

    Article  CAS  PubMed  Google Scholar 

  • Leinonen P, Aaltonen V, Koskela S, Lehenkari P, Korkiamà T, Peltonen J (2007) Impaired gap junction formation and intercellular calcium signaling in urinary bladder cancer cells can be improved by Go6976. Cell Commun Adhes 14:125–136

    Article  CAS  PubMed  Google Scholar 

  • Lipschutz JH, Kissil JL (1998) Expression of beta-catenin and gamma-catenin in epithelial tumor cell lines and characterization of a unique cell line. Cancer Lett 126:33–41

    Article  CAS  PubMed  Google Scholar 

  • Mandlekar S, Kong AN (1998) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477

    Article  Google Scholar 

  • Mariotti A, Perotti A, Sessa C, Ruegg C (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16:451–465

    Article  CAS  PubMed  Google Scholar 

  • Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marmé D, Schächtele C (1993) Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem 268:9194–9197

    CAS  PubMed  Google Scholar 

  • Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332:281–292

    CAS  PubMed  Google Scholar 

  • Mesnil M (2002) Connexins and cancer. Biol Cell 94:493–500

    Article  CAS  PubMed  Google Scholar 

  • Mesnil M, Piccoli C, Yamasaki H (1997) A tumor suppressor gene, Cx26, also mediates the bystander effect in HeLa cells. Cancer Res 57:2929–2932

    CAS  PubMed  Google Scholar 

  • Musil LS, Goodenough DA (1990) Gap junctional intercellular communication and the regulation of connexin expression and function. Curr Opin Cell Biol 2:875–880

    Article  CAS  PubMed  Google Scholar 

  • Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374

    Article  CAS  PubMed  Google Scholar 

  • Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990) Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell lines. J Cell Biol 111:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Naus CC, Elisevich K, Zhu D, Belliveau DJ, Del Maestro RF (1992) In vivo growth of C6 glioma cells transfected with connexin43 cDNA. Cancer Res 52:4208–4213

    CAS  PubMed  Google Scholar 

  • Paulson AF, Lampe PD, Meyer RA, TenBroek EM, Atkinson MM, Walseth TF, Johnson RG (2000) Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 113:3037–3049

    CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Fuchs E (2006) Catenins: keeping cells from getting their signals crossed. Dev Cell 11:601–612

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Anwar KN, Uddin S, Xu N, Ye RD, Platanias LC, Malik AB (2001) Protein kinase C-{delta} regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 21:5554–5565

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Múgica M, Meyerhardt JA, Rzasa J, Rimm DL, Johnson KR, Wheelock MJ, Reale MA (2001) Truncated DCC reduces N-cadherin/catenin expression and calcium-dependent cell adhesion in neuroblastoma cells. Lab Invest 81:201–210

    PubMed  Google Scholar 

  • Rohlff C, Blagosklonny MV, Kyle E, Kesari A, Kim IY, Zelner DJ, Hakim F, Trepel J, Bergan RC (1998) Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21. Prostate 37:51–59

    Article  CAS  PubMed  Google Scholar 

  • Ruch RJ, Klaunig JE, Pereira MA (1987) Inhibition of intercellular communication between mouse hepatocytes by tumor promoters. Toxicol Appl Pharmacol 87:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ruch RJ, Trosko JE, Madhukar BV (2001) Inhibition of connexin43 gap junctional intercellular communication by TPA requires ERK activation. J Cell Biochem 83:163–169

    Article  CAS  PubMed  Google Scholar 

  • Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Solan JL, Taffet SM, Javier R, Lampe PD (2005) Connexin 43 interacts with zona occludens-1 and-2 proteins in a cell cycle stage-specific manner. J Biol Chem 280:30416–30421

    Article  CAS  PubMed  Google Scholar 

  • Sledge GJ, Gökmen-Polar Y (2006) Protein kinase C-beta as a therapeutic target in breast cancer. Semin Oncol 33:15–18

    Article  Google Scholar 

  • Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    PubMed  Google Scholar 

  • Sohl G, Degen J, Teubner B, Willecke K (1998) The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett 428:27–31

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154–163

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2007) Key connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217:35–41

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Lampe PD (2008) Connexin43 in LA-25 cells with active v-src is phosphorylated on Y247, Y265, S262, S279/282, and S368 via multiple signaling pathways. Cell Commun Adhes 15:75–84

    Article  CAS  PubMed  Google Scholar 

  • Solan JL, Fry MD, TenBroek EM, Lampe PD (2003) Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J Cell Sci 116:2203–2211

    Article  CAS  PubMed  Google Scholar 

  • Tai M-H, Upham BL, Olson LK, Tsao M-S, Reed DNJ, Trosko JE (2007) Cigarette smoke components inhibited intercellular communication and differentiation in human pancreatic ductal epithelial cells. Int J Cancer 120:1855–1862

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Li P, Sun M, Yin G, Yu D (2006) Upregulation and activation of PKC[alpha] by ErbB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKC[alpha] and Src inhibitors. Oncogene 25:3286–3295

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA, Menon K, Alvarez E, Liu P, Shih C, Faul MM (2001) Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo 15:185–193

    CAS  PubMed  Google Scholar 

  • Teubner B, Odermatt B, Gulderagel M, Sohl G, Degen J, Bukauskas F, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21:1117–1126

    CAS  PubMed  Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781

    CAS  PubMed  Google Scholar 

  • Wolff JR, Stuke K, Missler M, Tytko H, Schwarz P, Rohlmann A, Chao TI (1998) Autocellular coupling by gap junctions in cultured astrocytes: a new view on cellular autoregulation during process formation. Glia 24:121–140

    Article  CAS  PubMed  Google Scholar 

  • Wu J-C, Tsai R-Y, Chung T-H (2003) Role of catenins in the development of gap junctions in rat cardiomyocytes. J Cell Biochem 88:823–835

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Li WE, Huang GY, Meyer R, Chen T, Luo Y, Thomas MP, Radice GL, Lo CW (2001) N-cadherin and Cx43alpha1 gap junctions modulates mouse neural crest cell motility via distinct pathways. Cell Commun Adhes 8:321–324

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Omori Y, Krutovskikh V, Zhu W, Mironov N, Yamakage K, Mesnil M (1999) Connexins in tumour suppression and cancer therapy. Novartis Found Symp 219:241–254

    Article  CAS  PubMed  Google Scholar 

  • Zeidman R, Pettersson L, Sailaja PR, Truedsson E, Fagerstrom S, Pahlman S, Larsson C (1999) Novel and classical protein kinase C isoforms have different functions in proliferation, survival and differentiation of neuroblastoma cells. Int J Cancer 81:494–510

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-Q, Hu Y, Wang B-J, Lin Z-X, Naus CCG, Nicholson BJ (2004) Effective asymmetry in gap junctional intercellular communication between populations of human normal lung fibroblasts and lung carcinoma cells. Carcinogenesis 25:473–482

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AW, Nelissen JMDT, van Emst-de Vries SE, Willems PHGM, de Lange F, Collard JG, van Leeuwen FN, Figdor CG (2004) Cytoskeletal restraints regulate homotypic ALCAM-mediated adhesion through PKC{alpha} independently of Rho-like GTPases. J Cell Sci 117:2841–2852

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Belliveau.

Additional information

Funding was provided through the Natural Sciences and Engineering Research Council of Canada (D.J.B., W.J.R.) and Canadian Institutes of Health Research (S.M.B.). Initial work was supported by a Hargreaves foundation studentship to M.M. and a Natural Sciences and Engineering Research Council Undergraduate award to M.M. and C.J.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, M., Jones, C., Sidhu, M. et al. PKC inhibition increases gap junction intercellular communication and cell adhesion in human neuroblastoma. Cell Tissue Res 340, 229–242 (2010). https://doi.org/10.1007/s00441-010-0938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0938-z

Keywords

Navigation