Skip to main content
Log in

Medullary neurons in the core white matter of the olfactory bulb: a new cell type

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Altman J (1969) Autoradiographic and histological studies of posnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458

    Article  PubMed  CAS  Google Scholar 

  • Behar TN, Li YX, Tran HT, Ma W, Deunlap V, Scott C, Maric D, Maric I, Schaffner AE, Serafini R, Smith SV, Somogyi R, Bautrin JY, Wen XL, Xian H (1996) GABAergic cells and signals in the CNS development. Perspect Dev Neurobiol 5:305–322

    Google Scholar 

  • Behar TN, Schaffner AE, Scott CA, O´Connell C, Barker JL (1998) Differential response of cortical plate and ventricular zone cells to GABA as migration stimulus. J Neurosci 18:6378–6387

    PubMed  CAS  Google Scholar 

  • Blanes T (1898) Sobre algunos puntos dudosos de la estructura del bulbo olfatorio. Rev Trim Microgr 3:99–127

    Google Scholar 

  • DeCastro F (1920) Algunas observaciones sobre la histogénesis de la neuroglia en el tallo olfativo. Trab Lab Invest Biol 18:83–108

    Google Scholar 

  • Doetsch F, García-Verdugo JM, Álvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammal brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Eyre MD, Antal M, Nusser Z (2008) Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J Neurosci 28:8217–8229

    Article  PubMed  CAS  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAa receptors. Nat Neurosci 6:215-229

    Article  CAS  Google Scholar 

  • Jankovski A, Sotelo C (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 371:376–396

    Article  PubMed  CAS  Google Scholar 

  • Kelsch W, Lin Ch-L, Mosley CP, Lois C (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29:11852–11858

    Article  PubMed  CAS  Google Scholar 

  • Larriva-Sahd J (2006) A histological and cytological study of the bed nuclei of the stria terminalis of the adult rat. II. Oval nucleus: extrinsic inputs, cell types, and neuronal modules. J Comp Neurol 497:772–807

    Article  PubMed  Google Scholar 

  • Larriva–Sahd J (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J Comp Neurol 510:309–350

    Article  PubMed  Google Scholar 

  • Lledo PM, Merkle FT, Álvarez-Buylla A (2008) Origin and function of olfactory bulb interneuron diversity. Cell 31:392–400

    CAS  Google Scholar 

  • Lohman AHM (1963) The anterior olfactory lobe of the guinea pig. Acta Anat 45:9–109

    Google Scholar 

  • Lohman AHM, Mentink GM (1969) The lateral olfactory tract and the anterior commissure, and the cells of the olfactory bulb. Brain Res 12:396–413

    Article  PubMed  CAS  Google Scholar 

  • López-Mascaraque L, De Carlos JA, Valverde F (1986) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granule layer. J Comp Neurol 253:135–152

    Article  PubMed  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Macrides F, Davis BJ (1983) Chemical neuroanatomy. In: Emson PC (ed) The olfactory bulb. Raven, New York, pp 391–426

    Google Scholar 

  • Mandarion N, Jourdan F, Didier A (2003) Deprivation of sensory inputs to the olfactory bulb up-regulates cell death and proliferation in the subventricular zone of adult mice. Neurosci 119:507–516

    Article  CAS  Google Scholar 

  • McDonald AJ (1982) Neurons in the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212:293–312

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster F (1976) The fine structure of the nervous system: the neurons and supporting cells. Saunders, Philadelphia

    Google Scholar 

  • Petreanu LT, Álvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22:6106–6113

    PubMed  CAS  Google Scholar 

  • Platel JC, Lacar B, Bordey A (2007) GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Histol 38:303–311

    Article  PubMed  CAS  Google Scholar 

  • Pressler RT, Strowbridge BW (2006) Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49:889–904

    Article  PubMed  CAS  Google Scholar 

  • Price JL (1974) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    Article  Google Scholar 

  • Ramón y Cajal S (1904) Corteza olfativa, textura del sistema nervioso central del hombre y los vertebrados, vol 2. Librería Nicolás Moya, Madrid

    Google Scholar 

  • Reyher CKH, Schwerdtfeger WK, Baumgarten HG (1988) Interbulbar axonal collateralization and morphology of anterior olfactory neurons in the rat. Brain Res Bull 20:549–560

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld TA, Macrides F (1984) Topographic organization of connections between the main olfactory bulb pars externa of the anterior olfactory nucleus in the hamster. J Comp Neurol 227:121–135

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, McDonald JK, Pemberton JL (1987) Short axon cells of the rat olfactory bulb display NADPH-diaphorase activity, neuropeptide Y-like immunoreactivity, and somatostatin-like immunoreactivity. J Comp Neurol 260:378–391

    Article  PubMed  CAS  Google Scholar 

  • Valverde F (1965) Studies of the pyriform lobe. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Wang DD, Kruger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the posnatal subventricular zone via GABAA receptor activation. J Physiol (Lond) 550:785–800

    Article  CAS  Google Scholar 

  • Whitman MC, Greer CA (2007) Adult generated neurons exhibit diverse developmental fates. Dev Neurobiol 67:1079–1093

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Tan J, Qin C, Lu Y, Ding C, Luo M (2008) Precise circuitry links bilaterally symmetric olfactory maps. Neuron 58:613–624

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gema Martínez Cabrera and Lourdes Palma for their valuable technical help and to Dr. Dorothy Pless for her careful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Larriva-Sahd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, R.G., Larriva-Sahd, J. Medullary neurons in the core white matter of the olfactory bulb: a new cell type. Cell Tissue Res 339, 281–295 (2010). https://doi.org/10.1007/s00441-009-0910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0910-y

Keywords

Navigation