Skip to main content
Log in

Immunolocalization of a Gαq protein to the chemosensory organs of Dipolydora quadrilobata (Polychaeta: Spionidae)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Chemoreception in marine invertebrates mediates a variety of ecologically important behaviors including defense, reproduction, larval settlement and recruitment, and feeding. The sensory pathways that regulate deposit-feeding activity by polychaetes living in sedimentary habitats are of particular interest because such feeding has profound effects on the physical and chemical properties of the habitat. Nevertheless, little is known concerning the molecular mechanisms of chemical signal transduction associated with deposit feeding and other behaviors in polychaetes. Chemosensory-based feeding behaviors are typically regulated by G-protein-coupled signal transduction pathways. However, the presence and role of such pathways have not been demonstrated in marine polychaetes. Methodologies involving degenerate primer-based reverse transcription with the polymerase chain reaction and rapid amplification of cDNA ends were used to identify and characterize a Gαq subunit expressed in the feeding palps of the spionid polychaete Dipolydora quadrilobata. The D. quadrilobata Gαq protein had high sequence similarity with previously reported Gαq subunits from both invertebrate and vertebrate taxa. Immunhistochemistry and immunocytochemistry were used with confocal laser scanning microscopy and transmission electron microscopy to visualize the distribution of a Gαq antibody in whole worms and in cilia of the feeding palps. Gαq immunoreactivity was concentrated in the nuchal organs, food-groove cilia, and lateral/abfrontal cilia of the feeding palps. Because these structures are known to be involved in chemoreception, we propose that Gαq isolated from D. quadrilobata is a key component of chemosensory signal transduction pathways in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444:295–301

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as a subunits. Cell 71:1069–1072

    Article  PubMed  CAS  Google Scholar 

  • Boekhoff I, Raming K, Breer H (1990) Pheromone-induced stimulation of inositol-trisphosphate formation in insect antennae is mediated by G-proteins. J Comp Physiol [B] 160:99–103

    CAS  Google Scholar 

  • Cabrera-vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Weng G, Li H, Harry A, Pieroni J, Dingus J, Hildebrandt JD, Guarnieri F, Weinstein H, Iyengar R (1997) A surface on the G protein β-subunit involved interaction with adenylyl cyclases. Proc Natl Acad Sci USA 94:2711–2714

    Article  PubMed  CAS  Google Scholar 

  • Dauer D (1984) Functional morphology and feeding behaviour of Streblospio benedicti (Polychaeta; Spionidae). In: Hutchings PA (ed) Proceedings of the First International Polychaete Conference. The Linnean Society of New South Wales, Sydney, pp 418–429

    Google Scholar 

  • Dauer D (1991) Functional morphology and feeding behavior of Polydora commensalis (Polychaeta: Spionidae). Ophelia Suppl 5:607–614

    Google Scholar 

  • Dauer D (1997) Functional morphology and feeding behavior of Marenzelleria viridis (Polychaeta: Spionidae). Bull Mar Sci 60:512–516

    Google Scholar 

  • Dauer DM, Mahon HK, Sardá R (2003) Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae). Hydrobiologia 496:207–213

    Article  Google Scholar 

  • Dorlöchter M, Klemeit M, Stieve H (1997) Immunological demonstration of Gq-protein in Limulus photoreceptors. Visual Neurosci 14:287–292

    Google Scholar 

  • Fadool DA, Estey SJ, Ache BW (1995) Evidence that a Gq protein mediates excitatory odor transduction in lobster olfactory receptor neurons. Chem Senses 20:489–498

    Article  PubMed  CAS  Google Scholar 

  • Fernald RD (2006) Casting a genetic light on the evolution of eyes. Science 313:1914–1918

    Article  PubMed  CAS  Google Scholar 

  • Ferner MC, Jumars PA (1999) Responses of deposit-feeding spionid polychaetes to dissolved chemical cues. J Exp Mar Biol Ecol 236:89–106

    Article  CAS  Google Scholar 

  • Forest DL, Lindsay SM (2008) Observations of serotonin and FMRFamide-like immunoreactivity in palp sensory structures and the anterior nervous system of spionid polychaetes. J Morphol 269:544–551

    Article  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Hatt H, Ache BW (1994) Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons. Proc Natl Acad Sci USA 91:6264–6268

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG, Alford WJ, Pietrokovski S (1995) Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163:GC17–GC26

    Article  PubMed  CAS  Google Scholar 

  • Horn F, Wenden EM van der, Oliveira L, Ijzerman AP, Vriend G (2000) Receptors coupling to G proteins: is there a signal behind the sequence. Proteins 41:448–459

    Article  PubMed  CAS  Google Scholar 

  • Jacquin-Joly E, François M, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of a newly isolated lepidopteran Gq protein a subunit cDNA. Eur J Biochem 269:2133–2142

    Article  PubMed  CAS  Google Scholar 

  • Janetopoulos C, Jin T, Devreoties P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291:2408–2411

    Article  PubMed  CAS  Google Scholar 

  • Kihslinger RL, Woodin SA (2000) Food patches and a surface deposit feeding spionid polychaete. Mar Ecol Prog Ser 201:233–239

    Article  Google Scholar 

  • Knol JC, Weidemann W, Planta RJ, Vreugdenhil R, Heerikhuizen H van (1992) Molecular cloning of G protein a subunits from the central nervous system of the mollusc Lymnaea stagnalis. FEBS Lett 314:215–219

    Article  PubMed  CAS  Google Scholar 

  • Knol JC, Ramnatsingh S, Van Kesteren ER, Van Minnen J, Planta RJ, Van Heerikhuizen H, Vreugdenhil E (1995) Cloning of a molluscan G protein α subunit of the Gq class which is expressed differentially in identified neurons. Eur J Biochem 230:193–199

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286:720–723

    Article  PubMed  CAS  Google Scholar 

  • Kunkel MT, Peralta EG (1993) Charged amino acids required for signal transduction by the m3 muscarinic acetylcholine receptor. EMBO J 12:3809–3815

    PubMed  CAS  Google Scholar 

  • Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319

    Article  PubMed  CAS  Google Scholar 

  • Lindsay SM, Riordan TJ, Forest D (2004) Identification and activity-dependent labeling of peripheral sensory structures on a spionid polychaete. Biol Bull 206:65–77

    Article  PubMed  Google Scholar 

  • Liu H, Farley JM (2005) Effects of first and second generation antihistamines on muscarinic induced mucus gland cell ion transport. BMC Pharmacol 5:8

    Article  PubMed  CAS  Google Scholar 

  • Mahon HK, Dauer DM (2005) Organic coatings and ontogenetic particle selection in Streblospio benedicti Webster (Spionidae: Polychaeta). J Exp Mar Biol Ecol 323:84–92

    Article  CAS  Google Scholar 

  • McClintock TS, Byrnes AP, Lerner MR (1992) Molecular cloning of a G-protein αi subunit from the lobster olfactory organ. Brain Res Mol Brain Res 14:273–276

    Article  PubMed  CAS  Google Scholar 

  • McClintock TS, Xu F, Quintero J, Gress AM, Landers TM (1997) Molecular cloning of a lobster Gqα protein expressed in neurons of olfactory organ and brain. J Neurochem 68:2248–2254

    Article  PubMed  CAS  Google Scholar 

  • Mezler M, Fleishcer J, Conzelmann S, Korchi A, Widmayer P, Breer H, Boekhoff I (2001) Identification of a nonmammalian Golf subtype: functional role in olfactory signaling of airborne odorants in Xenopus laevis. J Comp Neurol 439:400–410

    Article  PubMed  CAS  Google Scholar 

  • Munger SD, Gleeson RA, Aldrich HC, Rust NC, Ache BW, Greenberg RM (2000) Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4,5-trisphosphate receptor in lobster olfactory receptor neurons. J Biol Chem 275:20450–20457

    Article  PubMed  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    Article  PubMed  CAS  Google Scholar 

  • Purschke G (1997) Ultrastructure of nuchal organs in polychaetes (Annelida)—new results and review. Acta Zool 78:123–143

    Article  Google Scholar 

  • Purschke G (2005) Sense organs in polychaetes (Annelida). Hydrobiologia 535/536:53–78

    Article  Google Scholar 

  • Quan F, Forte MA (1990) Two forms of Drosophila melanogaster Gsα are produced by alternate splicing involving an unusual splice site. Mol Cell Biol 10:910–917

    PubMed  CAS  Google Scholar 

  • Rhode B (1990) Ultrastructure of nuchal organs in some marine polychaetes. J Morphol 206:95–108

    Article  Google Scholar 

  • Riordan TJ Jr, Lindsay SM (2002) Feeding responses to particle-bound cues by a deposit-feeding spionid polychaete, Dipolydora quadrilobata (Jacobi 1883). J Exp Mar Biol Ecol 277:79–95

    Article  Google Scholar 

  • Rohlf FJ, Sokal RR (1981) Statistical tables, 2nd edition. Freeman, New York

    Google Scholar 

  • Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766

    Article  PubMed  CAS  Google Scholar 

  • Rullier F (1950) Rôle de l’organe nucal des annélids polychètes. Bull Soc Zool Fr 75:18–24

    Google Scholar 

  • Sawaki K, Hiramatsu Y, Baum BJ, Ambudkar IS (1993) Involvement of Gαq/11 in m3-muscarinic receptor stimulation of phosphatidylinositol 4,5 bisphosphate-specific phospholipase C in rat parotid gland membranes. Arch Biochem Biophys 305:546–550

    Article  PubMed  CAS  Google Scholar 

  • Self RL, Jumars PA (1988) Cross-phyletic patterns of particle selection by deposit feeders. J Mar Res 46:119–143

    Article  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Article  PubMed  CAS  Google Scholar 

  • Storch V, Schlötzer-Schrehardt U (1988) Sensory structures. In: Westheide W, Hermans CO (eds) The ultrastructure of Polychaeta. Microfauna Marina, vol 4. Fischer, New York, pp 121–133

    Google Scholar 

  • Taghon GL (1982) Optimal foraging by deposit feeding invertebrates; roles of particle size and organic coating. Oecologia 52:295–304

    Article  Google Scholar 

  • Talluri S, Bhatt S, Smith DP (1995) Identification of a Drosophila G protein α subunit (dGqα-3) expressed in chemosensory cells and central neurons. Proc Natl Acad Sci USA 92:11475–11479

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Hollins B, Gress AM, Landers TM, McClintock TS (1997) Molecular cloning and characterization of a lobster Gαs protein expressed in neurons of olfactory organ and brain. J Neurochem 69:1793–1800

    PubMed  CAS  Google Scholar 

  • Xu F, Hollins B, Landers TM, McClintock TS (1998) Molecular cloning of a lobster Gβ subunit and Gβ expression in olfactory receptor neuron dendrites and brain neuropil. J Neurobiol 36:525–536

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Coso OA, Collins R, Gutkind JS, Simonds WF (1996) A C-terminal mutant of the G protein β subunit deficient in the activation of phosopholipase C-β*. J Biol Chem 271:20208–20212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research built on previous work by several talented graduate and undergraduate students studying various aspects of chemoreception and the biology of spionid polychaetes including Tim Riordan, David (Skip) Forest, Jennifer Jackson, Kristen Tomlinson, and Matthew Babineau. We also appreciate the capable laboratory and field assistance provided by Si Qing He and Toni Lombardi. We thank Kelly Edwards for facilitating the TEM and confocal microscopy work at the Electron Microscopy Laboratory, University of Maine, and Larry Mayer and Bob Gundersen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. Lindsay.

Additional information

Portions of this research were submitted by Marlene Tsie to the University of Maine in partial fulfillment for the requirements for an M.S. degree in Marine Biology. This research was funded by NSF grant OCE-0221229 to Sara Lindsay and Paul Rawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsie, M.S., Rawson, P.D. & Lindsay, S.M. Immunolocalization of a Gαq protein to the chemosensory organs of Dipolydora quadrilobata (Polychaeta: Spionidae). Cell Tissue Res 333, 469–480 (2008). https://doi.org/10.1007/s00441-008-0660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0660-2

Keywords

Navigation