Skip to main content

Advertisement

Log in

Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almarza AJ, Athanasiou KA (2004) Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng 32:2–17

    Article  PubMed  Google Scholar 

  • Almarza AJ, Bean AC, Baggett LS, Athanasiou KA (2006) Biochemical analysis of the porcine temporomandibular joint disc. Br J Oral Maxillofac Surg 44:124–128

    Article  PubMed  CAS  Google Scholar 

  • Athanasiou KA, Agarwal A, Dzida FJ (1994) Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res 12:340–349

    Article  PubMed  CAS  Google Scholar 

  • Cheung HS (1987) Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 16:343–356

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2005a) Growth factor impact on articular cartilage subpopulations. Cell Tissue Res 322:463–473

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2005b) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23:425–432

    Article  PubMed  CAS  Google Scholar 

  • Dearden LC, Bonucci E, Cuicchio M (1974) An investigation of ageing in human costal cartilage. Cell Tissue Res 152:305–337

    Article  PubMed  CAS  Google Scholar 

  • Detamore MS, Athanasiou KA (2003a) Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Eng 9:1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Detamore MS, Athanasiou KA (2003b) Tensile properties of the porcine temporomandibular joint disc. J Biomech Eng 125:558–565

    Article  PubMed  Google Scholar 

  • Detamore MS, Athanasiou KA (2004) Effects of growth factors on temporomandibular joint disc cells. Arch Oral Biol 49:577–583

    Article  PubMed  CAS  Google Scholar 

  • Detamore MS, Athanasiou KA (2005) Evaluation of three growth factors for TMJ disc tissue engineering. Ann Biomed Eng 33:383–390

    Article  PubMed  Google Scholar 

  • Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA (2005) Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol 24:45–57

    PubMed  CAS  Google Scholar 

  • Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263

    Article  PubMed  CAS  Google Scholar 

  • Foty RA, Pfleger CM, Forgacs G, Steinberg MS (1996) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–1620

    PubMed  CAS  Google Scholar 

  • Hanaoka K, Tanaka E, Takata T, Miyauchi M, Aoyama J, Kawai N, Dalla-Bona DA, Yamano E, Tanne K (2006) Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells. Angle Orthod 76:486–492

    PubMed  Google Scholar 

  • Hiraki Y, Inoue H, Shigeno C, Sanma Y, Bentz H, Rosen DM, Asada A, Suzuki F (1991) Bone morphogenetic proteins (BMP-2 and BMP-3) promote growth and expression of the differentiated phenotype of rabbit chondrocytes and osteoblastic MC3T3-E1 cells in vitro. J Bone Miner Res 6:1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Hoben GM, Athanasiou KA (2008) Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli. Biotechnol Bioeng 100:587–598

    Article  PubMed  CAS  Google Scholar 

  • Hu JC, Athanasiou KA (2006a) A self-assembling process in articular cartilage tissue engineering. Tissue Eng 12:969–979

    Article  PubMed  CAS  Google Scholar 

  • Hu JC, Athanasiou KA (2006b) Chondrocytes from different zones exhibit characteristic differences in high density culture. Connect Tissue Res 47:133–140

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Nakahara H, Nakata K, Nakase T, Kimura T, Ono K (1995) Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am 77:543–554

    PubMed  CAS  Google Scholar 

  • Johns DE, Athanasiou KA (2008) Engineering the TMJ disc with clinically-relevant cell sources. J Dent Res 87:548–552

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, Xu JW, Zaporojan VV, Mesa JM, Weinand C, Randolph MA, Bonassar LJ, Winograd JM, Yaremchuk MJ (2004) Integrative repair of cartilage with articular and nonarticular chondrocytes. Tissue Eng 10:1308–1315

    PubMed  CAS  Google Scholar 

  • Kato Y, Gospodarowicz D (1984) Growth requirements of low-density rabbit costal chondrocyte cultures maintained in serum-free medium. J Cell Physiol 120:354–363

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Wong ME, Helfrick JF, Thomas JB, Athanasiou KA (2003) Biomechanical tissue characterization of the superior joint space of the porcine temporomandibular joint. Ann Biomed Eng 31:924–930

    Article  PubMed  Google Scholar 

  • Kisiday JD, Kurz B, DiMicco MA, Grodzinsky AJ (2005) Evaluation of medium supplemented with insulin-transferrin-selenium for culture of primary bovine calf chondrocytes in three-dimensional hydrogel scaffolds. Tissue Eng 11:141–151

    Article  PubMed  CAS  Google Scholar 

  • Lee JD, Hwang O, Kim SW, Han S (1997) Primary cultured chondrocytes of different origins respond differently to bFGF and TGF-beta. Life Sci 61:293–299

    Article  PubMed  CAS  Google Scholar 

  • Makower AM, Wroblewski J, Pawlowski A (1989a) Effects of IGF-I, rGH, FGF, EGF and NCS on DNA-synthesis, cell proliferation and morphology of chondrocytes isolated from rat rib growth cartilage. Cell Biol Int Rep 13:259–270

    Article  PubMed  CAS  Google Scholar 

  • Makower AM, Skottner A, Wroblewski J (1989b) Binding of insulin-like growth factor-I (IGF-I) to primary cultures of chondrocytes from rat rib growth cartilage. Cell Biol Int Rep 13:655–665

    Article  PubMed  CAS  Google Scholar 

  • Mauck RL, Yuan X, Tuan RS (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189

    Article  PubMed  CAS  Google Scholar 

  • Milam SB, Klebe RJ, Triplett RG, Herbert D (1991) Characterization of the extracellular matrix of the primate temporomandibular joint. J Oral Maxillofac Surg 49:381–391

    Article  PubMed  CAS  Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage–II. A numerical algorithm and an experimental study. J Biomech 22:853–861

    Article  PubMed  CAS  Google Scholar 

  • Napolitano AP, Chai P, Dean DM, Morgan JR (2007) Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng 13:2087–2094

    Article  PubMed  CAS  Google Scholar 

  • Pietila K, Kantomaa T, Pirttiniemi P, Poikela A (1999) Comparison of amounts and properties of collagen and proteoglycans in condylar, costal and nasal cartilages. Cells Tissues Organs 164:30–36

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Szeparowicz P, Sawicki B, Wolczynski S, Wojnar J (2003) Rabbit articular cartilage defects treated with cultured costal chondrocytes (preliminary report). Folia Morphol (Warsz) 62:107–112

    Google Scholar 

  • Rosenberg L, Johnson B, Schubert M (1965) Proteinpolysaccharides from human articular and costal cartilage. J Clin Invest 44:1647–1656

    Article  PubMed  CAS  Google Scholar 

  • Safronova EE, Borisova NV, Mezentseva SV, Krasnopol’skaya KD (1991) Characteristics of the macromolecular components of the extracellular matrix in human hyaline cartilage at different stages of ontogenesis. Biomed Sci 2:162–168

    PubMed  CAS  Google Scholar 

  • Stockwell RA (1967) The cell density of human articular and costal cartilage. J Anat 101:753–763

    PubMed  CAS  Google Scholar 

  • Sweigart MA, Athanasiou KA (2001) Toward tissue engineering of the knee meniscus. Tissue Eng 7:111–129

    Article  PubMed  CAS  Google Scholar 

  • Szeparowicz P, Popko J, Sawicki B, Wolczynski S, Bierc M (2004) Comparison of cartilage self repairs and repairs with costal and articular chondrocyte transplantation in treatment of cartilage defects in rats. Rocz Akad Med Bialymst 49(Suppl 1):28–30

    PubMed  Google Scholar 

  • Takigawa M, Kinoshita A, Enomoto M, Asada A, Suzuki F (1991) Effects of various growth and differentiation factors on expression of parathyroid hormone receptors on rabbit costal chondrocytes in culture. Endocrinology 129:868–876

    PubMed  CAS  Google Scholar 

  • Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I (2004) Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 10:762–770

    Article  PubMed  Google Scholar 

  • Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  PubMed  CAS  Google Scholar 

  • Yoon YM, Kim SJ, Oh CD, Ju JW, Song WK, Yoo YJ, Huh TL, Chun JS (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem 277:8412–8420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chris Revell for his help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Athanasiou.

Additional information

We gratefully acknowledge funding from NIDCR (grant no. R01DE015038–01A2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johns, D.E., Athanasiou, K.A. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage. Cell Tissue Res 333, 439–447 (2008). https://doi.org/10.1007/s00441-008-0652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0652-2

Keywords

Navigation