Skip to main content
Log in

Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The aim of this study has been the biochemical demonstration of the presence of γ-aminobutyric acid (GABA) in the Mediterranean sea fan Eunicella cavolini by means of high-performance liquid chromatography, and the description of the distribution pattern of GABA and its related molecules, glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT) and one of the GABA receptors (GABAB R) by immunohistochemical methods. The interrelationships of GABA, GAD and GABA receptor immunoreactivity have been established by using double-immunohistochemical methods and confocal microscopy. The immunodetection of monoclonal and/or polyclonal antibodies has revealed GABA immunoreactivity throughout the polyp tissue, both in neuronal and non-neuronal elements. GAD immunoreactivity has been mostly localized in the neuronal compartment, contacting epithelial and muscular elements. GABAB R immunoreactivity appears particularly intense in the nematocytes and in the oocyte envelope; its presence in GAD-immunoreactive neurons in the tentacles suggests an autocrine type of regulation. Western blot analysis has confirmed that a GABAB R, with a molecular weight of 142 kDa, similar to that of rat brain, is present in E. cavolini polyp tissue. The identification of the sites of the synthesis, vesicular transport, storage and reception of GABA strongly suggests the presence of an almost complete set of GABA-related molecules for the functioning of the GABAergic system in this simple nervous system. The distribution of these different immunoreactivities has allowed us to hypothesize GABA involvement in nematocyst discharge, in body wall and enteric muscular contraction, in neuronal integration and in male gametocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA (B) receptors. Physiol Rev 84:835–867

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Enna SJ, Olsen RW (2004) Six decades of GABA. Biochem Pharmacol 68:1477–1478

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Concas A, Pierobon P, Mostallino MC, Porcu P, Marino G, Minei R, Biggio G (1998) Modulation of gamma-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 85:979–988

    Article  PubMed  CAS  Google Scholar 

  • Delmonte Corrado MU, Ognibene M, Trielli F, Politi H, Passalacqua M, Falugi C (2002) Detection of molecules related to the GABAergic system in a single-cell eukaryote, Paramecium primaurelia. Neurosci Lett 329:65–68

    Article  PubMed  CAS  Google Scholar 

  • Enna SJ, Bowery NG (2004) GABAB receptor alterations as indicators of physiological and pharmacological function. Biochem Pharmacol 68:1541–1548

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KS, Panula P (1994) Gamma-aminobutyric acid in the nervous system of a planarian. J Comp Neurol 345:528–536

    Article  PubMed  CAS  Google Scholar 

  • Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735–1754

    Article  Google Scholar 

  • Geigerseder C, Doepner R, Thalhammer A, Frungieri M, Gamel-Didelon K, Calandra RS, Köhn FM, Mayerhofer A (2003) Evidence for a GABAergic system in rodent and human testis: local GABA production and GABA receptors. Neuroendocrinology 77:314–323

    Article  PubMed  CAS  Google Scholar 

  • Girosi L, Ramoino P, Diaspro A, Gallus L, Ciarcia G, Tagliafierro G (2005) FMRFamide-like immunoreactivity in the sea fan Eunicella cavolini (Cnidaria: Octocorallia). Cell Tissue Res 320:331–336

    Article  PubMed  CAS  Google Scholar 

  • Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol [A] 146:9–25

    CAS  Google Scholar 

  • Kass-Simon G, Scappaticci AA (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80:1772–1794

    Article  Google Scholar 

  • Kass-Simon G, Scappaticci AA (2004) Glutamatergic and GABAnergic control in the tentacle effector systems of Hydra vulgaris. Hydrobiologia 530/531:67–71

    Article  CAS  Google Scholar 

  • Kass-Simon G, Pannaccione A, Pierobon P (2003) GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp Biochem Physiol Part [A] 136:329–342

    Article  CAS  Google Scholar 

  • Krnjevic K (2004) How does a little acronym become a big transmitter? Biochem Pharmacol 68:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Louzan P, Gallardo MG, Tramezzani JH (1986) Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J Reprod Fertil 77:499–504

    Article  PubMed  CAS  Google Scholar 

  • Mackie GO, Meech RW (2000) Central circuitry in the jellyfish Aglantha digitale. III. The motor giant rootlet pathway and the pacemaker system. J Exp Biol 203:1797–1807

    PubMed  CAS  Google Scholar 

  • McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364:282–283

    Article  Google Scholar 

  • McIntire SI, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  PubMed  CAS  Google Scholar 

  • Mezler M, Muller T, Raming K (2001) Cloning and functional expression of GABAB receptor from Drosophila. Eur J Neurosci 13:477–486

    Article  PubMed  CAS  Google Scholar 

  • Pierobon P, Concas A, Santoro G, Marino G, Minei R, Pannaccione A, Mostallino MC, Biggio G (1995) Biochemical and functional identification of GABA receptors in Hydra vulgaris. Life Sci 56:1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Pierobon P, De Petrocellis L, Minei R (1997) Effects of antho-RFamide on the action of GABA in Hydra vulgaris Pallas, 1766. In: Hartog JC den (ed) Coelenterate biology. N.N.M., Leiden, pp 385–391

    Google Scholar 

  • Pierobon P, Tino A, Minei R, Marino G (2004) Different roles of GABA and glycine in the modulation of chemosensory responses in Hydra vulgaris (Cnidaria, Hydrozoa). Hydrobiologia 530/531:59–66

    Article  CAS  Google Scholar 

  • Pittaluga A, Bonfanti A, Raiteri M (1997) Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Naunyn-Schmiedeberg’s Arch Pharmacol 356:29–38

    Article  CAS  Google Scholar 

  • Ramoino P, Scaglione S, Diaspro A, Beltrame F, Fato M, Usai C (2004) GABAA receptor subunits identified in Paramecium by immunofluorescence confocal microscopy. FEMS Microbiol Lett 238:449–453

    PubMed  CAS  Google Scholar 

  • Ritta MN, Calamera JC, Bas DE (1998) Occurrence of GABA and GABA receptors in human spermatozoa. Mol Hum Reprod 4:769–773

    Article  PubMed  CAS  Google Scholar 

  • Roberts E, Frankel S (1950) Gamma-amino butyric acid in the brain; its formation from glutamic acid. J Biol Chem 187:55–63

    PubMed  CAS  Google Scholar 

  • Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414

    Article  PubMed  CAS  Google Scholar 

  • Shi Q-X, Yuan Y-Y, Roldan ERS (1997) γ-Aminobutyric acid (GABA) induces the acrosome reaction in human spermatozoa. Mol Hum Reprod 8:677–683

    Article  CAS  Google Scholar 

  • Westfall JA, Elliott CF, Carlin RW (2002) Ultrastructural evidence for two-cell and three-cell neural patwhways in the tentacle epifermis of the sea anemone Aiptasia pallida. J Morphol 251:83–92

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Authority of the Protected Marine Area of Punta Campanella and Protected Marine Area of Portofino for allowing the collection of Eunicella cavolini specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Girosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girosi, L., Ferrando, S., Beltrame, F. et al. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach. Cell Tissue Res 329, 187–196 (2007). https://doi.org/10.1007/s00441-007-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0408-4

Keywords

Navigation