Skip to main content
Log in

Central nervous system projections to and from the commissural ganglion of the crab Cancer borealis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Higher-order inputs provide important regulatory control to motor circuits, but few cellular-level studies of such inputs have been performed. To begin studying higher-order neurons in an accessible model system, we have localized, in the supraesophageal ganglion (brain), neurons that are candidates for influencing the well-characterized motor circuits in the stomatogastric nervous system (STNS) of the crab Cancer borealis. The STNS is an extension of the central nervous system and includes four ganglia, within which are a set of motor circuits that regulate the ingestion and processing of food. These motor circuits are locally regulated by a set of modulatory neurons, most of which are located in the paired commissural ganglia (CoGs). These modulatory neurons are well-positioned to receive input from brain neurons because the circumesophageal commissures (CoCs) connect the brain with the CoGs. We have performed a series of CoC backfills to localize the brain neurons that are likely to innervate the CoGs and are, therefore, candidates for influencinng the STNS motor patterns. CoC backfill-labeled neuronal somata within the brain are clustered around a subset of anatomically defined neuropil regions. We have concomitantly localized many CoG neurons that project into the brain. This latter pathway presumably includes neurons that provide feedback regarding ongoing STNS activity. Interestingly, nearly all of these brain and CoG neurons project through the medial aspect of the CoC. This work provides an initial framework for future studies to determine the way that higher-order input regulates rhythmic motor patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atwood HL, Wiersma CAG (1967) Command interneurons in the crayfish central nervous system. J Exp Biol 46:249–261

    PubMed  CAS  Google Scholar 

  • Beenhakker MP, Blitz DM, Nusbaum MP (2004) Long-lasting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. J Neurophysiol 91:78–91

    Article  PubMed  Google Scholar 

  • Beenhakker MP, DeLong ND, Saideman SR, Nadim F, Nusbaum MP (2005) Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. J Neurosci 25:8794–8806

    Article  PubMed  CAS  Google Scholar 

  • Blitz DM, Beenhakker MP, Nusbaum MP (2004) Different sensory systems share projection neurons but elicit distinct motor patterns. J Neurosci 24:11381–11390

    Article  PubMed  CAS  Google Scholar 

  • Bowerman RF, Larimer JL (1974a) Command fibres in the circumoesophogeal connectives of crayfish. I. Tonic fibres. J Exp Biol 60:95–117

    Google Scholar 

  • Bowerman RF, Larimer JL (1974b) Command fibres in the circumoesophogeal connectives of crayfish. II. Phasic fibres. J Exp Biol 60:119–134

    Google Scholar 

  • Brodfuehrer PD, Thorogood MS (2001) Identified neurons and leech swimming behavior. Prog Neurobiol 63:371–381

    Article  PubMed  CAS  Google Scholar 

  • Buschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127–1135

    Article  PubMed  Google Scholar 

  • Christie AE, Stein W, Quinlan JE, Beenhakker MP, Marder E, Nusbaum MP (2004) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 469:153–169

    Article  PubMed  CAS  Google Scholar 

  • Claiborne BJ, Selverston AI (1984) Localization of stomatogastric IV neuron cell bodies in lobster brain. J Comp Physiol [A] 154:27–32

    Article  Google Scholar 

  • Coleman MJ, Nusbaum MP, Cournil I, Claiborne BJ (1992) Distribution of modulatory inputs to the stomatogastric ganglion of the crab Cancer borealis. J Comp Neurol 325:581–594

    Article  PubMed  CAS  Google Scholar 

  • Cooke IM, Goldstone MW (1970) Fluorescence localization of monoamines in crab neurosecretory structures. J Exp Biol 53:651–668

    PubMed  CAS  Google Scholar 

  • Dickinson PS, Hauptman J, Hetling J, Mahadevan A (2001) RCPH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster. J Neurophysiol 85:1424–1435

    PubMed  CAS  Google Scholar 

  • Fleischer AG (1981) The effect of eyestalk hormones on the gastric mill in the intact lobster, Panulirus interruptus. J Comp Physiol 141:363–368

    Article  Google Scholar 

  • Fraser PJ (1974a) Interneurons in crab connectives (Carcinus maenas (L.)): giant fibres. J Exp Biol 61:593–613

    PubMed  CAS  Google Scholar 

  • Fraser PJ (1974b) Interneurons in crab connectives (Carcinus maenas(L.)): directional statocyst fibres. J Exp Biol 61:615–628

    PubMed  CAS  Google Scholar 

  • Goldberg D, Nusbaum MP, Marder E (1988) Substance P-like immunoreactivity in the stomatogastric nervous systems of the crab Cancer borealis and the lobsters Panulirus interruptus and Homarus americanus. Cell Tissue Res 252:515–522

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (1992) Dynamic biological networks. The stomatogastric nervous system. MIT Press, Cambridge

    Google Scholar 

  • Katz PS, Harris-Warrick RM (1990) Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptor afferents. J Neurosci 10:1495–1512

    PubMed  CAS  Google Scholar 

  • Kilman VL, Marder E (1996) Ultrastructure of the stomatogastric ganglion neuropil of the crab, Cancer borealis. J Comp Neurol 374:362–375

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  PubMed  CAS  Google Scholar 

  • Mellon D, Alones V, Lawrence MD (1992) Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J Comp Neurol 321:93–111

    Article  PubMed  Google Scholar 

  • Messinger DI, Kutz KK, Le T, Verley DR, Hsu YW, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J Exp Biol 208:3303–3319

    Article  PubMed  CAS  Google Scholar 

  • Meyrand P, Simmers J, Moulins M (1994) Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J Neurosci 14:630–644

    PubMed  CAS  Google Scholar 

  • Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • Perrins R, Walford A, Roberts A (2002) Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles. J Neurosci 22:4229–4240

    PubMed  CAS  Google Scholar 

  • Powers LW (1973) Gastric mill rhythms in intact crabs. Comp Biochem Physiol 46:767–783

    Article  Google Scholar 

  • Reed RA, Page CH (1977) Circumesophageal connective control of the common inhibitory motoneuron in the crab, Carcinus maenas. Comp Biochem Physiol 56:567–571

    Article  Google Scholar 

  • Robertson RM, Moulins M (1981) A corollary discharge of total foregut motor activity is monitored by a single interneurone in the lobster Homarus gammarus. J Physiol (Paris) 77:823–827

    CAS  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Sandeman R, Sandeman D (2003) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277

    Article  PubMed  Google Scholar 

  • Sandeman D, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman D, Beltz B, Sandeman R (1995) Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J Comp Neurol 352:263–279

    Article  PubMed  CAS  Google Scholar 

  • Selverston AI, Moulins M (1987) The crustacean stomatogastric system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shetreat-Klein AN, Cropper EC (2004) Afferent-induced changes in rhythmic motor programs in the feeding circuitry of Aplysia. J Neurophysiol 92:2312–2322

    Article  PubMed  Google Scholar 

  • Sigvardt KA, Mulloney B (1982) Sensory alteration of motor patterns in the stomatogastric nervous system of the spiny lobster Panulirus interruptus. J Exp Biol 97:137–152

    PubMed  CAS  Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

    PubMed  CAS  Google Scholar 

  • Skiebe P (2003) Neuropeptides in the crayfish stomatogastric nervous system. Microsc Res Tech 60:302–312

    Article  PubMed  CAS  Google Scholar 

  • Spirito CP (1975) The organization of the crayfish oesophageal nervous system. J Comp Physiol 102:237–249

    Article  Google Scholar 

  • Utting M, Agricola H, Sandeman R, Sandeman D (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261

    Article  PubMed  CAS  Google Scholar 

  • Viana di Prisco G, Pearlstein E, Le Ray D, Robitaille R, Dubuc R (2000) A cellular mechanism for the transformation of a sensory input into a motor command. J Neurosci 20:8169–8176

    Google Scholar 

  • Wachowiak M, Diebel CE, Ache BW (1996) Functional organization of olfactory processing in the acocessory lobe of the spiny lobster. J Comp Physiol [A] 178:211–226

    Google Scholar 

  • Wiersma CAG, Mill PJ (1965) “Descending” neuronal units in the commissure of the crayfish central nervous system, and their integration of visual, tactile, and proprioceptive stimuli. J Comp Neurol 125:67–94

    Article  PubMed  CAS  Google Scholar 

  • White RS, Nadim F, Nusbaum MP (2005) Activation of a peripheral modulatory system elicits a distinct gastric mill rhythm. Soc Neurosci Abstr (Annual Meeting) 31:752.20752.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Nusbaum.

Additional information

This work was supported by a grant from the National Institute of Neurological Disorders and Strokes (NS42813 to M.P.N.) and a National Science Foundation Fellowship (DGE9616278 to M.S.K.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirby, M.S., Nusbaum, M.P. Central nervous system projections to and from the commissural ganglion of the crab Cancer borealis . Cell Tissue Res 328, 625–637 (2007). https://doi.org/10.1007/s00441-007-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0398-2

Keywords

Navigation