Skip to main content
Log in

External sensilla of the locust abdomen provide the central nervous system with an interganglionic network

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

External mechanoreceptors and contact chemoreceptors on the cuticle of the sixth abdominal segment of locusts have divergent primary projections of their sensory neurons that form arbours in the segmental and anterior abdominal ganglia. Homologous interganglionic projections from adjacent segments converge in the neuropile of each abdominal ganglion. Of the contributing types of sensilla, three were previously unknown for locust pregenital segments: tactile mechanosensory hairs with dual innervation, external proprioceptors of the hairplate type covered by intersegmental membranes and single campaniform sensilla that monitor cuticular strain in sternites and tergites. In general, interdependence of motor coordination in the abdominal segments is based on a neural network that relies heavily on intersegmental primary afferents that cooperate to identify the location, parameters and strength of external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altman JS, Tyrer NM (1977) The locust wing hinge stretch receptors. I. Primary sensory neurones with enormous central arborizations.J Comp Neurol 172:409–430

    Article  PubMed  CAS  Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–361

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Wilcheck M (1980) The use of the biotin complex as a tool in molecular biology. Methods Biochem Anal 26:143

    Google Scholar 

  • Bevan S, Burrows M (1999) Maps of the somata of efferent neurones with axons in the lateral nerves of locust abdominal ganglia. J Exp Biol 202:2911–2923

    PubMed  Google Scholar 

  • Berkowitz A, Laurent GJ (1996) Local control of leg movement and motor patterns during grooming in locusts. J Neurosci 16:8067–8078

    PubMed  CAS  Google Scholar 

  • Boyan GS, Williams JLD, Ball EE (1989) The wind-sensitive cercal receptor/giant interneurone system of the locust, Locusta migratoria. I. Anatomy of the system. J Comp Physiol [A] 165:495–510

    Article  Google Scholar 

  • Bräunig P, Hustert R, Pflüger H-J (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors in the pro- and metathorax and their central projections. Cell Tissue Res 216:57–78

    Article  PubMed  Google Scholar 

  • Bräunig P, Pflüger H-J, Hustert R (1983) The specificity of central nervous projections of locust mechanoreceptors. J Comp Neurol 218:197–207

    Article  PubMed  Google Scholar 

  • Brown AG (1991) Nerve cells and nervous systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brown AG, Rose PK, Snow PJ (1977) The morphology of hair follicle afferent collaterals in the spinal chord of the cat. J Physiol (Lond) 272:779–797

    CAS  Google Scholar 

  • Consoulas C, Kent KS, Levine RB (1996) Remodeling of the peripheral processes and presynaptic terminals of leg motoneurons during metamorphosis of the hawk moth Manduca. J Comp Neurol 372:415–434

    Article  PubMed  CAS  Google Scholar 

  • Ferber M, Hustert R (1996) The locust abdominal receptor muscle organ: response characteristics and its role in the control of segmental distance. J Comp Physiol [A] 178:679–697

    Article  Google Scholar 

  • Gnatzy W, Hustert R (1989) Mechanoreceptors in behavior. In: Huber F, Loher W, Moore TE (eds) Cricket behavior and neurobiology. Cornell University Press, New York, pp 198–226

    Google Scholar 

  • Hassenstein B, Hustert R (1999) Hiding responses of locusts to approaching objects. J Exp Biol 202:1701–1710

    PubMed  Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418

    Article  PubMed  CAS  Google Scholar 

  • Hustert R (1974) Morphologie und Atmungsbewegungen des 5. Abdominalsegments von Locusta migratoria migratorioides. Zool Jb 78:157–174

    Google Scholar 

  • Hustert R (1975) Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intact Locusta migratoria migratorioides. J Comp Physiol 97:159–179

    Article  Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351

    Article  PubMed  CAS  Google Scholar 

  • Hustert R (1985) Multisegmental integration and divergence of afferent information from single tactile hairs in a cricket. J Exp Biol 118:209–227

    Google Scholar 

  • Hustert R, Gnatzy W (1995) The motor program for defensive kicking in crickets: performance and neural control. J Exp Biol 198:1275–1283

    PubMed  Google Scholar 

  • Lewis GW, Miller PL, Mills PS (1973) Neuromuscular mechanisms of abdominal pumping in the locust. J Exp Biol 59:149–168

    Google Scholar 

  • Kalogianni E (1995) Physiological properties of windsensitive and tactile sensilla on the ovipsitor and their role during oviposition in the locust. J Exp Biol 198:1359–1369

    PubMed  Google Scholar 

  • Matheson T (1997) Hindleg targeting during scratching in the locust. J Exp Biol 200:1317–1325

    PubMed  CAS  Google Scholar 

  • Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–253

    PubMed  CAS  Google Scholar 

  • Merritt D J, Whitington P M (1995) Central projections of sensory neurons in the Drosophila embryo correlate with sensory modalitity, soma position, and proneural gene function. J Neurosci 15:1755–1767

    PubMed  CAS  Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1981) Distribution and specific projections of mechanoreceptors in the thorax and proximal leg joints of locusts. II. The external mechanoreceptors: hairplates and tactile hairs. Cell Tissue Res 216:79–96

    Article  PubMed  Google Scholar 

  • Rekowski C v., Hustert R (1991) Sites of tactile stimuli on the body of locusts determine defensive reactions. In: Elsner N, Penzlin H (eds) Synapse - transmission - modulation. Thieme, Stuttgart, p 67

    Google Scholar 

  • Rose U (1997) Serotonerge Wirkungen und serotonerge Interneurone im abdominalen Nervensystem von Insekten. Doctoral thesis, University of Göttingen

  • Rose U, Seebohm G, Hustert R (2000) The role of internal pressure and muscle activation during locust oviposition. J Insect Physiol 46:69–80

    Article  PubMed  CAS  Google Scholar 

  • Thomas JG (1965) The abdomen of the female desert locust (Schistocerca gregaria) with special reference to the sense organs. Anti-Locust Res Bull 42:1–22

    Google Scholar 

  • Tousson E, Hustert R (2000) Central projections from contact chemoreceptors of the locust ovipositor and adjacent cuticle. Cell Tissue Res 302:285–294

    Article  PubMed  CAS  Google Scholar 

  • Watson AHD, Pflüger HJ (1987) The distribution of GABA-like immunoreactivity in relation to ganglion structure in the abdominal nerve cord of the locust (Schistocerca gregaria). Cell Tissue Res 249:391–402

    Article  Google Scholar 

  • Zawarzin A (1912) Histologische Studien über Insekten. II. Das sensible Nervensystem der Aeschnalarven. Zeitschr Wiss Zool 100:245–283

    Google Scholar 

  • Zawarzin A (1924) Zur Morphologie der Nervenzentren. Das Bauchmark der Insekten. Ein Beitrag zur vergleichenden Histologie (Histologische Studien über Insekten IV). Zeitschr Wiss Zool 122:323–424

    Google Scholar 

Download references

Acknowledgement

We thank Silvia Gubert for her expert technical help with electron microscopy and dextran staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Hustert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tousson, E., Hustert, R. External sensilla of the locust abdomen provide the central nervous system with an interganglionic network. Cell Tissue Res 325, 151–162 (2006). https://doi.org/10.1007/s00441-005-0106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0106-z

Keywords

Navigation