Skip to main content
Log in

Differential appearance of dynamin in constitutive and regulated exo-endocytosis: a single-cell multiplex RT-PCR study

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neurons in the central nervous system establish, via their axons and dendrites, an extended network that allows synaptic transmission. During developmental maturation and process outgrowth, membrane turnover is necessary for the enlargement and subsequent growth of axons and dendrites from the perikarya to the target cell (constitutive exocytosis/endocytosis). After targeting and synapse formation, small synaptic vesicles are needed for the quantal release of neurotransmitters from the presynaptic terminal with subsequent recycling by regulated exocytosis/endocytosis. An investigation of the onset of the appearance of mRNA and protein in dissociated cultures of neurons from mouse hippocampus or from chick retina has shown an early abundance of proteins involved in exocytosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1, whereas dynamin 1, a protein necessary for clathrin-mediated endocytosis, can be detected only after neurons have established contacts with neighboring cells. The results reveal that constitutive membrane incorporation and regulated synaptic transmitter release is mediated by the same neuronal proteins. Moreover, the data exclude that dynamin 1 takes part in constitutive recycling before synapse formation, but dynamin 2 is present at this stage. Thus, dynamin 2 may be the constitutive counterpart of dynamin 1 in growing neurons. Synapse establishment is linked to an upregulation of dynamin 1 and thereby represents the beginning of the regulated recycling of membranes back into the presynaptic terminal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 3:445–451

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M, Lahr G, Mayerhofer A, Gratzl M (1991) Expression of synaptophysin during the prenatal development of the rat spinal cord: correlation with basic differentiation processes of neurons. Neuroscience 42:569–582

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M, Grabs D, Rager G (1999) Developmental expression of dynamin in the chick retinotectal system. J Histochem Cytochem 47:1297–1306

    PubMed  CAS  Google Scholar 

  • Bergmann M, Grabs D, Rager G (2000) Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick. J Comp Neurol 418:361–372

    Article  PubMed  CAS  Google Scholar 

  • Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Bruns D, Jahn R (2002) Molecular determinants of exocytosis. Pflügers Arch Eur J Physiol 443:333–338

    Article  CAS  Google Scholar 

  • Butler MH, David C, Ochoa G-C, Freyberg Z, Daniell L, Grabs D, Cremona O, De Camilli P (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367

    Article  PubMed  CAS  Google Scholar 

  • Catsicas S, Grenningloh G, Pich EM (1994) Nerve-terminal proteins: to fuse to learn. Trends Neurosci 17:368–373

    Article  PubMed  CAS  Google Scholar 

  • Contestabile A (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res Brain Res Rev 32:476–509

    Article  PubMed  CAS  Google Scholar 

  • Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A 91:644–648

    Article  PubMed  CAS  Google Scholar 

  • Cook G, Tannahill D, Keynes R (1998) Axon guidance to and from choice points. Curr Opin Neurobiol 8:64–72

    Article  PubMed  CAS  Google Scholar 

  • Damke H, Binns DD, Ueda H, Schmid SL, Baba T (2001) Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol Biol Cell 12:2578–2589

    PubMed  CAS  Google Scholar 

  • Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk MR, Di Paolo G, Nemoto Y, Crum J, Ellisman MH, De Camilli P, Shupliakov O, Brodin L (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27:301–312

    Article  PubMed  CAS  Google Scholar 

  • Gao XB, Van den Pol AN (2000) GABA release from mouse axonal growth cones. J Physiol (Lond) 523:629–637

    Article  CAS  Google Scholar 

  • Grabs D, Bergmann M, Schuster T, Fox PA, Brich M, Gratzl M (1994) Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the rat hippocampal network. Eur J Neurosci 6:1765–1771

    Article  PubMed  CAS  Google Scholar 

  • Grabs D, Bergmann M, Rager G (2000) Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur J Neurosci 12:1545–1553

    Article  PubMed  CAS  Google Scholar 

  • Grosse G, Tapp R, Wartenberg M, Sauer H, Fox PA, Grosse J, Gratzl M, Bergmann M (1998) Prenatal hippocampal granule cells in primary cell culture form mossy fiber boutons at pyramidal cell dendrites. J Neurosci Res 51:602–611

    Article  PubMed  CAS  Google Scholar 

  • Grosse G, Grosse J, Tapp R, Kuchinke J, Gorsleben M, Fetter I, Höhne-Zell B, Gratzl M, Bergmann M (1999) SNAP-25 requirement for dendritic growth of hippocampal neurons. J Neurosci Res 56:539–546

    Article  PubMed  CAS  Google Scholar 

  • Grundschober C, Malosio ML, Astolfi L, Giordano T, Nef P, Meldolesi J (2002) Neurosecretion competence: a comprehensive gene expression program identified in PC12 cells. J Biol Chem 277:36715–36724

    Article  PubMed  CAS  Google Scholar 

  • Herskovits JS, Burgess CC, Obar RA, Vallee RB (1994) Effects of mutant rat dynamin on endocytosis. J Cell Biol 122:565–578

    Article  Google Scholar 

  • Higgins MK, McMahon HT (2002) Snap-shots of clathrin-mediated endocytosis. Trends Biochem Sci 27:257–263

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Huttner WB, Schmidt A (2000) Lipids, lipid modification and lipid-protein interaction in membrane budding and fission—insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol 10:543–551

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Kozaki S, Terakawa S, Kawano S, Ide CF, Komiya Y (1996) Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth. J Cell Biol 134:205–215

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Lang T, Südhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  • Kraszewski K, Mundigl O, Daniell L, Verderio C, Matteoli M, De Camilli P (1995) Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J Neurosci 15:4328–4342

    PubMed  CAS  Google Scholar 

  • Leoni C, Menegon A, Benfenati F, Toniolo D, Pennuto M, Valtorta F (1999) Neurite extension occurs in the absence of regulated exocytosis in PC12 subclones. Mol Biol Cell 10:2919–2931

    PubMed  CAS  Google Scholar 

  • Letourneau PC (1996) The cytoskeleton in nerve growth cone motility and axonal pathfinding. Perspect Dev Neurobiol 4:111–123

    PubMed  CAS  Google Scholar 

  • Matteoli M, Takei K, Perin MS, Südhof TC, De Camilli P (1992) Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J Cell Biol 117:849–861

    Article  PubMed  CAS  Google Scholar 

  • McPherson PS, Garcia EP, Slepnev VI, David C, Zhang XM, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357

    Article  PubMed  CAS  Google Scholar 

  • Mundigl O, Ochoa G-C, David C, Slepnev VI, Kabanov AV, De Camilli P (1998) Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J Neurosci 18:93–103

    PubMed  CAS  Google Scholar 

  • Nakata T, Takemura R, Hirokawa N (1993) A novel member of dynamin family of GTP-binding proteins is expressed specifically in the testis. J Cell Sci 105:1–5

    PubMed  CAS  Google Scholar 

  • Noakes PG, Chin D, Kim SS, Liang S, Phillips WD (1999) Expression and localization of dynamin and syntaxin during neural development and neuromuscular synapse formation. J Comp Neurol 410:531–540

    Article  PubMed  CAS  Google Scholar 

  • Osen-Sand A, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448

    Article  PubMed  CAS  Google Scholar 

  • Reutens AT, Begley CG (2002) Endophilin-1: a multifunctional protein. Int J Biochem Cell Biol 34:1173–1177

    Article  PubMed  CAS  Google Scholar 

  • Ringstad N, Nemoto Y, De Camilli P (1997) The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A 94:8569–8574

    Article  PubMed  CAS  Google Scholar 

  • Ringstad N, Nemoto Y, De Camilli P (2001) Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J Biol Chem 276:40424–40430

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Shupliakov O, Löw P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263

    Article  PubMed  CAS  Google Scholar 

  • Steiner P, Sarria J, Huni B, Marsault R, Catsicas S, Hirling H (2002) Overexpression of neuronal Sec1 enhances axonal branching in hippocampal neurons. Neuroscience 113:893

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  • Tseng Y, Wirtz D (2004) Dendritic branching and homogenization of actin networks mediated by arp2/3 complex. Phys Rev Lett 93:258104

    Article  PubMed  CAS  Google Scholar 

  • Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA, Bellen HJ (2002) Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109:101–112

    Article  PubMed  CAS  Google Scholar 

  • Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 13:425–456

    Article  PubMed  CAS  Google Scholar 

  • Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, Molnar Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26

    PubMed  CAS  Google Scholar 

  • Zakharenko S, Popov S (2000) Plasma membrane recycling and flow in growing neurites. Neuroscience 97:185–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Jahn (Göttingen, Germany) and P. DeCamilli (New Haven, USA) for the generous supply of antibodies, and L. Clement, M. Kaczorowski, and C. Weber for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Grabs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabs, D., Bergmann, M. Differential appearance of dynamin in constitutive and regulated exo-endocytosis: a single-cell multiplex RT-PCR study. Cell Tissue Res 322, 237–244 (2005). https://doi.org/10.1007/s00441-005-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0005-3

Keywords

Navigation