Skip to main content
Log in

Agrin becomes concentrated at neuroeffector junctions in developing rodent urinary bladder

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The formation of somatic neuromuscular junctions in skeletal muscle is regulated by an extracellular matrix protein called agrin. Here, we have examined the expression and localization of agrin during development of the rodent urinary bladder, as a first step to examining its possible role at autonomic neuroeffector junctions in smooth muscle. We have found that agrin is expressed on the surface of developing smooth muscle cells and in the basement membrane underlying the urothelium. More importantly, agrin is progressively concentrated at parasympathetic varicosities during postnatal development and is present at virtually all junctions in mature muscle. Reverse transcription/polymerase chain reaction analysis has shown that pelvic ganglion neurons that innervate the bladder express LN/z8 agrin, whereas bladder smooth muscle expresses LN/z− agrin. Together, these results demonstrate that nerve and/or muscle agrin becomes localized at cholinergic parasympathetic varicosities in smooth muscle, where it could play a role in the maturation of the neuroeffector junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

β-DG:

Beta-dystroglycan

E:

Embryonic day

ECM:

Extracellular matrix

MuSK:

Muscle-specific kinase

PN:

Postnatal day

RT-PCR:

Reverse transcription/polymerase chain reaction

SCG:

Superior cervical ganglia

VAChT:

Vesicular acetylcholine transporter

References

  • Baker LA, Gomez RA (1998) Embryonic development of the ureter and bladder: acquisition of smooth muscle. J Urol 160:545–550

    Article  Google Scholar 

  • Baskin LS, Hayward SW, Young PF, Cunha GR (1996) Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anat (Basel) 155:163–171

    Google Scholar 

  • Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4:295–308

    Article  CAS  PubMed  Google Scholar 

  • Bowe MA, Fallon JR (1995) The role of agrin in synapse formation. Ann Rev Neurosci 18:443–462

    Article  Google Scholar 

  • Burden SJ (1998) The formation of neuromuscular synapses. Genes Dev 12:133–148

    Google Scholar 

  • Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44

    Article  Google Scholar 

  • Burgess RW, Skarnes WC, Sanes JR (2000) Agrin isoforms with distinct amino termini. Differential expression, localization, and function. J Cell Biol 151:41–52

    Article  Google Scholar 

  • Burgess RW, Dickman DK, Nunez L, Glass DJ, Sanes JR (2002) Mapping sites responsible for interactions of agrin with neurons. J Neurochem 83:271–284

    Google Scholar 

  • Burkin DJ, Kim JE, Gu M, Kaufman SJ (2000) Laminin and alpha7beta1 integrin regulate agrin-induced clustering of acetylcholine receptors. J Cell Sci 113:2877–2886

    Google Scholar 

  • Burnstock G (1990) Innervation of bladder and bowel. Ciba Found Symp 151:2–26

    Google Scholar 

  • Chai TC, Steers WD (1996) Neurophysiology of micturition and continence. Urol Clin North Am 23:221–236

    Google Scholar 

  • Choate JK, Klemm M, Hirst GD (1993) Sympathetic and parasympathetic neuromuscular junctions in the guinea-pig sino-atrial node. J Auton Nerv Syst 44:1–15

    Article  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  CAS  PubMed  Google Scholar 

  • Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371

    Google Scholar 

  • Cotman SL, Halfter W, Cole GJ (1999) Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 249:54–64

    Article  Google Scholar 

  • Cotman SL, Halfter W, Cole GJ (2000) Agrin binds to beta-amyloid (Abeta), accelerates Abeta fibril formation, and is localized to Abeta deposits in Alzheimer’s disease brain. Mol Cell Neurosci 15:183–198

    Article  Google Scholar 

  • Daggett DF, Cohen MW, Stone D, Nikolics K, Rauvala H, Peng HB (1996) The role of an agrin-growth factor interaction in ACh receptor clustering. Mol Cell Neurosci 8:272–285

    Article  Google Scholar 

  • DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  Google Scholar 

  • Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA (1997) Agrin binds to the nerve-muscle basal lamina via laminin. J Cell Biol 137:671–683

    Article  Google Scholar 

  • Denzer AJ, Schulthess T, Fauser C, Schumacher B, Kammerer RA, Engel J, Ruegg MA (1998) Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J 17:335–343

    Article  Google Scholar 

  • Dutton JL, Hansen MA, Balcar VJ, Barden JA, Bennett MR (1999) Development of P2X receptor clusters on smooth muscle cells in relation to nerve varicosities in the rat urinary bladder. J Neurocytol 28:4–16

    Article  Google Scholar 

  • Elbadawi A, Yalla SV, Resnick NM (1993) Structural basis of geriatric voiding dysfunction. II. Aging detrusor: normal versus impaired contractility. J Urol 150:1657–1667

    Google Scholar 

  • Eusebio A, Oliveri F, Barzaghi P, Ruegg MA (2003) Expression of mouse agrin in normal, denervated and dystrophic muscle. Neuromuscul Disord 13:408–415

    Article  Google Scholar 

  • Fallon JR, Gelfman CE (1989) Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle. J Cell Biol 108:1527–1535

    Article  Google Scholar 

  • Ferns M, Carbonetto S (2001) Challenging the neurocentric view of neuromuscular synapse formation. Neuron 30:311–314

    Article  Google Scholar 

  • Ferns M, Hoch W, Campanelli JT, Rupp F, Hall ZW, Scheller RH (1992) RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron 8:1079–1086

    Article  Google Scholar 

  • Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall Z (1993) The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11:491–502

    Article  Google Scholar 

  • Gabella G (1995) The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat. J Neurocytol 24:159–187

    Google Scholar 

  • Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535

    Article  CAS  PubMed  Google Scholar 

  • Gesemann M, Brancaccio A, Schumacher B, Ruegg MA (1998) Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J Biol Chem 273:600–605

    Article  Google Scholar 

  • Gingras J, Ferns M (2001) Expression and localization of agrin during sympathetic synapse formation in vitro. J Neurobiol 48:228–242

    Article  Google Scholar 

  • Gingras J, Rassadi S, Cooper E, Ferns M (2002) Agrin plays an organizing role in the formation of sympathetic synapses. J Cell Biol 158:1109–1118

    Article  Google Scholar 

  • Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523

    Article  Google Scholar 

  • Glukhova M, Koteliansky V, Fondacci C, Marotte F, Rappaport L (1993) Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Dev Biol 157:437–447

    Article  Google Scholar 

  • Hansen MA, Balcar VJ, Barden JA, Bennett MR (1998) The distribution of single P2x1-receptor clusters on smooth muscle cells in relation to nerve varicosities in the rat urinary bladder. J Neurocytol 27:529–539

    Article  Google Scholar 

  • Hill CE, Klemm M, Edwards FR, Hirst GD (1993) Sympathetic transmission to the dilator muscle of the rat iris. J Auton Nerv Syst 45:107–123

    Article  Google Scholar 

  • Hirst GD, Choate JK, Cousins HM, Edwards FR, Klemm MF (1996) Transmission by post-ganglionic axons of the autonomic nervous system: the importance of the specialized neuroeffector junction. Neuroscience 73:7–23

    Article  Google Scholar 

  • Hoch W, Ferns M, Campanelli JT, Hall ZW, Scheller RH (1993) Developmental regulation of highly active alternatively spliced forms of agrin. Neuron 11:479–490

    Article  Google Scholar 

  • Hoch W, Campanelli JT, Harrison S, Scheller RH (1994) Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J 13:2814–2821

    Google Scholar 

  • Klemm M, Hirst GD, Campbell G (1992) Structure of autonomic neuromuscular junctions in the sinus venosus of the toad. J Auton Nerv Syst 39:139–150

    Article  Google Scholar 

  • Lee HY, Bardini M, Burnstock G (2000) Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 163:2002–2007

    Article  CAS  PubMed  Google Scholar 

  • Liang SX, Motin L, Moussa CE, Lavidis NA, Phillips WD (2001) Spatial distribution and developmental appearance of postjunctional P2X1 receptors on smooth muscle cells of the mouse vas deferens. Synapse 42:1–11

    Article  Google Scholar 

  • Lieth E, Fallon JR (1993) Muscle agrin: neural regulation and localization at nerve-induced acetylcholine receptor clusters. J Neurosci 13:2509–2514

    Google Scholar 

  • Martin PT, Sanes JR (1997) Integrins mediate adhesion to agrin and modulate agrin signaling. Development 124:3909–3917

    Google Scholar 

  • Moll J, Barzaghi P, Lin S, Bezakova G, Lochmuller H, Engvall E, Muller U, Ruegg MA (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413:302–307

    Google Scholar 

  • Moore KH, Ray FR, Barden JA (2001) Loss of purinergic P2X(3) and P2X(5) receptor innervation in human detrusor from adults with urge incontinence. J Neurosci 21:RC166

    Google Scholar 

  • Morissette N, Carbonetto S (1995) Laminin alpha 2 chain (M chain) is found within the pathway of avian and murine retinal projections. J Neurosci 15:8067–8082

    Google Scholar 

  • Neumann FR, Bittcher G, Annies M, Schumacher B, Kroger S, Ruegg MA (2001) An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein. Mol Cell Neurosci 17:208–225

    Article  Google Scholar 

  • Role LW, Roufa DG, Fischbach GD (1987) The distribution of acetylcholine receptor clusters and sites of transmitter release along chick ciliary ganglion neurite-myotube contacts in culture. J Cell Biol 104:371–379

    Article  Google Scholar 

  • Ruegg MA, Tsim KWK, Horton SE, Kroger S, Escher G, Gensch EM, McMahan UJ (1992) The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron 8:691–699

    Article  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  CAS  PubMed  Google Scholar 

  • Sann H, Walb G, Pierau FK (1997) Postnatal development of the autonomic and sensory innervation of the musculature in the rat urinary bladder. Neurosci Lett 236:29–32

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Yoshimura N, Chancellor MB (2003) Implications of diabetes mellitus in urology. Urol Clin North Am 30:1–12

    Google Scholar 

  • Schafer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84:361–376

    Google Scholar 

  • Smith MA, O’Dowd DK (1994) Cell specific regulation of agrin RNA splicing in the chick ciliary ganglion. Neuron 12:795–804

    Article  Google Scholar 

  • Straub V, Ettinger AJ, Durbeej M, Venzke DP, Cutshall S, Sanes JR, Campbell KP (1999) Epsilon-sarcoglycan replaces alpha-sarcoglycan in smooth muscle to form a unique dystrophin-glycoprotein complex. J Biol Chem 274:27989–27996

    Article  Google Scholar 

  • Sugiyama J, Bowen DC, Hall ZW (1994) Dystroglycan binds nerve and muscle agrin. Neuron 13:1–20

    Article  Google Scholar 

  • Thomas WS, O’Dowd DK, Smith MA (1993) Developmental expression and alternative splicing of chick agrin RNA. Dev Biol 158:523–535

    Article  Google Scholar 

  • Tsen G, Halfter W, Kroger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270:3392–3399

    Article  Google Scholar 

  • Tsim KWK, Ruegg MA, Escher G, Kroger S, McMahan UJ (1992) cDNA that encodes active agrin. Neuron 8:677–689

    Article  Google Scholar 

  • Wakabayashi Y, Kawakami T, Aimi Y, Okada Y (2002) Development of growth-associated protein-43 and neurotrophin receptor immunoreactivities in the rat urinary bladder. Anat Embryol (Berl) 205:255–261

    Article  Google Scholar 

  • Winder SJ (2001) The complexities of dystroglycan. Trends Biochem Sci 26:118–124

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Baskin LS, Blakey C, Goodman J, Cunha GR (1999) Ultrastructural smooth muscle ontogeny of the rat bladder. Adv Exp Med Biol 462:93–102

    Google Scholar 

  • Zhu Q, Ritchie J, Marouf N, Dion SB, Resnick NM, Elbadawi A, Kuchel GA (2001) Role of ovarian hormones in the pathogenesis of impaired detrusor contractility: evidence in ovariectomized rodents. J Urol 166:1136–1141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. S. Carbonetto and C. Jacobson (McGill University) for their generous gift of antibodies, and the Ferns laboratory for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferns.

Additional information

J. Gingras and J. Spicer contributed equally to this work.

This work was supported by a Canadian Institute of Health Research grant (MOP-13237) and UC Davis Medical School startup funds to M.F.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gingras, J., Spicer, J., Altares, M. et al. Agrin becomes concentrated at neuroeffector junctions in developing rodent urinary bladder. Cell Tissue Res 320, 115–125 (2005). https://doi.org/10.1007/s00441-004-1045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1045-9

Navigation