Skip to main content
Log in

The subcommissural organ expresses D2, D3, D4, and D5 dopamine receptors

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissner’s fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–e
Fig. 3a–e
Fig. 4a–f
Fig. 5a–d
Fig. 6a–c

Similar content being viewed by others

References

  • Aiso M, Shigematsu K, Kebabian JW, Potter WZ, Cruciani RA, Saavedra JM (1987) Dopamine D1 receptor in rat brain: a quantitative autoradiographic study with 125I-SCH 23982. Brain Res 408:281–285

    Article  CAS  PubMed  Google Scholar 

  • Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Mol Brain Res 23:204–212

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, Schuerger RJ, Severs WB (1994) Evidence for a noradrenergic projection to the subcommissural organ. Neurosci Lett 180:209–213

    Article  CAS  PubMed  Google Scholar 

  • Bergson C, Mrzljak L, Lidow MS, Goldman-Rakic PS, Levenson R (1995) Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells. Proc Natl Acad Sci USA 92:3468–3472

    CAS  PubMed  Google Scholar 

  • Biedermann B, Fröhlich E, Grosche J, Wagner HJ, Reichenbach A (1995) Mammalian Müller (glial) cells express functional D2 dopamine receptors. Neuroreport 6:609–612

    CAS  PubMed  Google Scholar 

  • Bongarzone ER, Howard SG, Schonmann V, Campagnoni AT (1998) Identification of the dopamine D3 receptor in oligodendrocyte precursors: potential role in regulating differentiation and myelin formation. J Neurosci 18:5344–5353

    CAS  PubMed  Google Scholar 

  • Bouchaud C (1979) Evidence for a multiple innervation of subcommissural ependymocytes in the rat. Neurosci Lett 12:253–258

    Article  CAS  PubMed  Google Scholar 

  • Bouchaud C, Bosler O (1986) The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. Int Rev Cytol 105:283–327

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    PubMed  Google Scholar 

  • Caprile T, Hein S, Rodríguez S, Montecinos H, Rodríguez E (2003) Reissner fiber binds and transports away monoamines present in the cerebrospinal fluid. Mol Brain Res 110:177–192

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V (1976) Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Res 102:103–130

    Article  CAS  PubMed  Google Scholar 

  • Chazot PL, Doherty AJ, Strange PG (1993) Antisera specific for D2 dopamine receptors. Biochem J 289:789–794

    CAS  PubMed  Google Scholar 

  • Estivill-Torrús G, Cifuentes M, Grondona JM, Miranda E, Bermúdez-Silva FJ, Fernández-Llebrez P, Pérez J (1998) Quantification of the secretory glycoproteins of the subcommissural organ by a sensitive sandwich ELISA with a polyclonal antibody and a set of monoclonal antibodies against the bovine Reissner’s fiber. Cell Tissue Res 249:407–413

    Google Scholar 

  • Fernández-Llebrez P, Miranda E, Estivill-Torrús G, Cifuentes M, Grondona JM, López-Ávalos MD, Pérez-Martín M, Pérez J (2001) Analysis and quantification of the secretory products of the subcommissural organ by use of monoclonal antibodies. Microsc Res Tech 52:510–519

    Article  PubMed  Google Scholar 

  • Gamrani H, Belin MF, Aguera M, Calas A, Pujol JF (1981) Radioautographic evidence for an innervation of the subcommissural organ by GABA-containing nerve fibres. J Neurocytol 10:411–424

    CAS  PubMed  Google Scholar 

  • Ghiani P, Uva B, Vallarino M, Mandich A, Masini MA (1988) Angiotensin II specific receptors in subcommissural organ. Neurosci Lett 85:212–216

    Article  CAS  PubMed  Google Scholar 

  • Giordano J, Harting PR (1987) In vivo labeling indicates that CSF serotonin activates the 5-HT1c receptor on the apical surface of the choroid plexus epithelium. Neuroscience 22:223

    Google Scholar 

  • Gobron S, Monnerie H, Meiniel R, Creveaux I, Lehmann W, Lamalle D, Dastugue B, Meiniel A (1996) SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation. J Cell Sci 109:1053–1061

    CAS  PubMed  Google Scholar 

  • Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A (2000) Subcommissural organ/Reissner’s fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia 32:177–191

    Article  CAS  PubMed  Google Scholar 

  • Hansson E, Ronnback L (1988) Interaction between catecholamines and vasoactive intestinal peptide in cultured astrocytes. Neuropharmacology 27:295–300

    Article  CAS  PubMed  Google Scholar 

  • Hess J, Sterba G (1973) Studies concerning the function of the complex subcommissural organ-liquor fibre: the binding ability of the liquor fibre to pyrocatechin derivatives and its functional aspects. Brain Res 58:303–312

    Article  CAS  PubMed  Google Scholar 

  • Howard S, Landry C, Fisher R, Bezouglaia O, Handley V, Campagnoni A (1998) Postnatal localization and morphogenesis of cells expressing the dopaminergic D2 receptor gene in rat brain: expression in non-neuronal cells. J Comp Neurol 391:87–98

    Article  CAS  PubMed  Google Scholar 

  • Jarvie KR, Niznik HB, Seeman P (1988) Dopamine D2 receptor binding subunits of Mr congruent to 140,000 and 94,000 in brain: deglycosylation yields a common unit of Mr congruent to 44,000. Mol Pharmacol 34:91–97

    CAS  PubMed  Google Scholar 

  • Jiménez AJ, Fernández-Llebrez P, Pérez-Fígares JM (2001) Neural input and neural control of the subcommissural organ. Microsc Res Tech 52:520–533

    Article  PubMed  Google Scholar 

  • Karpa KD, Lin R, Kabbani N, Levenson R (2000) The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol 58:677–683

    CAS  PubMed  Google Scholar 

  • Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, Calle A de la (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 402:353–371

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, Calle A de la (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100:689–699

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA 98:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Léger L, Degueurce A, Lundberg JJ, Pujol JF, Møllgard K (1983) Origin and influence of the serotoninergic innervation of the subcommissural organ in the rat. Neuroscience 10:411–423

    PubMed  Google Scholar 

  • Lindvall-Axelsson M, Mathew C, Nilsson C, Owman C (1988) Effect of 5-hydroxytryptamine on the rate of cerebrospinal fluid production in rabbit. Exp Neurol 99:362–368

    Article  CAS  PubMed  Google Scholar 

  • Meiniel A (2001) SCO-spondin, a glycoprotein of the subcommissural organ/Reissner’s fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech 52:484–495

    Article  CAS  PubMed  Google Scholar 

  • Meiniel A, Meiniel R, Didier R, Creveaux I, Gobron S, Monnerie H, Dastugue B (1996) The subcommissural organ and Reissner’s fiber complex. An enigma in the central nervous system? Prog Histochem Cytochem 30:1–66

    CAS  Google Scholar 

  • Mignini F, Bronzetti E, Felici L, Ricci A, Sabbatini M, Tayebati SK, Amenta F (2000) Dopamine receptor immunohistochemistry in the rat choroid plexus. J Auton Pharmacol 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Miranda E, Almonacid JA, Rodríguez S, Pérez J, Hein S, Cifuentes M, Fernández-Llebrez P, Rodríguez EM (2001) Searching for specific binding sites of the secretory glycoproteins of the subcommissural organ. Microsc Res Tech 52:541–551

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Møllgard K, Lundberg JJ, Wiklund L, Lachenmayer L, Baumgarten HG (1978) Morphologic consequences of serotonin neurotoxin administration: neuron-target cell interaction in the rat subcommissural organ. Ann N Y Acad Sci 305:262–288

    PubMed  Google Scholar 

  • Monnerie H, Boespflug-Tanguy O, Dastugue B, Meiniel A (1995) Reissner’s fibre supports the survival of chick cortical neurons in primary mixed cultures. Cell Tissue Res 282:81–91

    CAS  PubMed  Google Scholar 

  • Monnerie H, Dastugue B, Meiniel A (1997) In vitro differentiation of chick spinal cord neurons in the presence of Reissner’s fibre, an ependymal brain secretion. Brain Res Dev Brain Res 102:167–176

    Article  CAS  PubMed  Google Scholar 

  • Monnerie H, Dastugue B, Meiniel A (1998) Effect of synthetic peptides derived from SCO-spondin conserved domains on chick cortical and spinal-cord neurons in cell cultures. Cell Tissue Res 293:407–418

    CAS  PubMed  Google Scholar 

  • Naumann W (1986) Immunohistochemical investigations on the ontogenesis of the subcommissural organ. Acta Histochem Suppl 33:265–272

    CAS  PubMed  Google Scholar 

  • Ng GY, O’Dowd BF, Lee SP, Chung HT, Brann MR, Seeman P, George SR (1996) Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun 227:200–204

    Article  CAS  PubMed  Google Scholar 

  • Nicklaus KJ, McGonigle P, Molinoff PB (1988) [3H]SCH 23390 labels both dopamine-1 and 5-hydroxytryptamine1c receptors in the choroid plexus. J Pharmacol Exp Ther 247:343–348

    Google Scholar 

  • Nilsson C, Fahrenkrug J, Lindvall-Axelsson M, Owman C (1991) Epithelial cells purified from choroid plexus have receptors for vasoactive intestinal polypeptide. Brain Res 542:241–247

    Article  CAS  PubMed  Google Scholar 

  • Nualart F, Hein S, Rodríguez EM, Oksche A (1991) Identification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner’s fiber complex. Evidence for the existence of two precursor forms. Mol Brain Res 11:227–238

    CAS  PubMed  Google Scholar 

  • Nürnberger F, Schöniger S (2001) Presence and functional significance of neuropeptide and neurotransmitter receptors in subcommissural organ cells. Microsc Res Tech 52:534–540

    Article  PubMed  Google Scholar 

  • Oksche A (1961) Vergleichende Untersuchungen über die sekretorische Aktivität des Subkommissuralorgans und den Gliacharakter seiner Zellen. Z Zellforsch 54:549–612

    CAS  Google Scholar 

  • Oksche A, Rodríguez EM, Fernández-Llebrez P (1993) The subcommissural organ: an ependymal brain gland. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olsson R (1993) Reissner’s fiber mechanisms: some common denominators. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The subcommissural organ: an ependymal brain gland. Springer, Berlin Heidelberg New York, pp 33–39

  • Pérez J, Garrido O, Cifuentes M, Alonso FJ, Estivill-Torrús G, Eller G, Nualart F, López-Ávalos MD, Fernández-Llebrez P, Rodríguez EM (1996) Bovine Reissner’s fiber (RF) and the central canal of the spinal cord: an immunocytochemical study using a set of monoclonal antibodies against the RF-glycoproteins. Cell Tissue Res 286:33–42

    PubMed  Google Scholar 

  • Reuss B, Unsicker K (2000) Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol Cell Neurosci 16:781–792

    Article  CAS  PubMed  Google Scholar 

  • Richter HG, Muñoz RI, Millan CS, Guinazu MF, Yulis CR, Rodríguez EM (2001) The floor plate cells from bovines express the mRNA encoding for SCO-spondin and its translation products. Mol Brain Res 93:137–147

    CAS  PubMed  Google Scholar 

  • Rios M, Ojeda S, Velasquez LA, Maisey K, Croxatto HB (2001) A segment and epithelium specific messenger ribonucleic acid fragment up-regulated by estradiol in the rat oviduct. Biol Res 34:15–21

    CAS  PubMed  Google Scholar 

  • Rodríguez S, Caprile T (2001) Functional aspects of the subcommissural organ-Reissner’s fiber complex with emphasis in the clearance of brain monoamines. Microsc Res Tech 52:564–572

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    PubMed  Google Scholar 

  • Rodríguez EM, Oksche A, Hein S, Yulis CR (1992) Cell biology of the subcommissural organ. Int Rev Cytol 135:39–121

    PubMed  Google Scholar 

  • Rodríguez EM, Jara P, Richter H, Montecinos H, Flandes B, Wiegand R, Oksche A (1993) Evidence of the release of CSF-soluble secretory material from the subcommissural organ, with particular reference to the situation in human. In: Oksche A, Rodríguez EM, Fernández-Llebrez P (eds) The subcommissural organ: an ependymal brain gland. Springer, Berlin Heidelberg New York, pp 121–131

  • Rodríguez EM, Rodríguez S, Hein S (1998) The subcommissural organ. Microsc Res Tech 41:98–123

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez S, Vio K, Wagner C, Barria M, Navarrete EH, Ramírez VD, Perez-Fígares JM, Rodríguez EM (1999) Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner’s fiber complex by maternal delivery of antibodies. Exp Brain Res 128:278–290

    Article  CAS  PubMed  Google Scholar 

  • Roland BL, Li KX, Funder JW (1995) Hybridization histochemical localization of 11 beta-hydroxysteroid dehydrogenase type 2 in rat brain. Endocrinology 136:4697–4700

    Article  CAS  PubMed  Google Scholar 

  • Ruckebusch M, Sutra JF (1984) On the significance of monoamines and their metabolites in the cerebrospinal fluid of the sheep. J Physiol (Lond) 348:457–469

    CAS  Google Scholar 

  • Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ (1998) Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res 780:270–293

    CAS  PubMed  Google Scholar 

  • Schöbitz K, Garrido O, Heinrichs M, Speer L, Rodríguez EM (1986) Ontogenetical development of the chick and duck subcommissural organ. An immunocytochemical study. Histochemistry 84:31–40

    CAS  PubMed  Google Scholar 

  • Schöbitz K, González C, Peruzzo B, Yulis CR, Rodríguez EM (2001) Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material. Microsc Res Tech 52:496–509

    PubMed  Google Scholar 

  • Schöniger S, Wehming S, González C, Schöbitz K, Rodríguez E, Oksche A, Yulis CR, Nürnberger F (2001) The dispersed cell culture as model for functional studies of the subcommissural organ: preparation and characterization of the culture system. J Neurosci Methods 107:47–61

    PubMed  Google Scholar 

  • Schöniger S, Kopp MD, Schomerus C, Maronde E, Dehghani F, Meiniel A, Rodríguez M, Korf HW, Nürnberger F (2002a) Effects of neuroactive substances on the activity of subcommissural organ cells in dispersed cell and explant cultures. Cell Tissue Res 307:101–114

    PubMed  Google Scholar 

  • Schöniger S, Maronde E, Kopp MD, Korf HW, Nürnberger F (2002b) Transcription factor CREB and its stimulus-dependent phosphorylation in cell and explant cultures of the bovine subcommissural organ. Cell Tissue Res 308:131–142

    Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    CAS  PubMed  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    PubMed  Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 89:10178–10182

    CAS  PubMed  Google Scholar 

  • Ternaux JP, Boireau A, Bourgoin S, Hamon M, Hery F, Glowinski J (1976) In vivo release of 5-HT in the lateral ventricle of the rat: effects of 5-hydroxytryptophan and tryptophan. Brain Res 101:533–548

    Article  CAS  PubMed  Google Scholar 

  • Torres-Farfan C, Richter HG, Rojas-García P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Seron-Ferre M (2003) mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88:450–458

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    CAS  PubMed  Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Google Scholar 

  • Walker GR, Feather KD, Davis PD, Hines KK (1995) SuperSignalTM CL-HRP: a new enhanced chemiluminescent substrate for the development of the horseradish peroxide label in Western blotting applications. J Natl Inst Health Res 7:76

    Google Scholar 

  • Wang F, Bergson C, Howard RL, Lidow MS (1997) Differential expression of D1 and D5 dopamine receptors in the fetal primate cerebral wall. Cereb Cortex 7:711–721

    Article  CAS  PubMed  Google Scholar 

  • Zanassi P, Paolillo M, Montecucco A, Avvedimento EV, Schinelli S (1999) Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552

    Article  CAS  PubMed  Google Scholar 

  • Zawarynski P, Tallerico T, Seeman P, Lee SP, O’Dowd BF, George SR (1998) Dopamine D2 receptor dimers in human and rat brain. FEBS Lett 441:383–386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A. de la Calle and his collaborators, Dr. Z. Khan, Dr. A. Gutiérrez, and Dr. R. Martín, from the Department of Cell Biology, University of Málaga for the gift of the polyclonal antibodies against dopamine receptors. We also wish to thank to E. Moreira for her help with the immunostaining of frozen sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban M. Rodríguez.

Additional information

Financial support was provided by grants PI 030756 and Red CIEN, Instituto de Salud Carlos III, Spain (to J.M.P.F.), and 1030265 from Fondecyt, Chile (to E.M.R.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomé, M., Jiménez, A.J., Richter, H. et al. The subcommissural organ expresses D2, D3, D4, and D5 dopamine receptors. Cell Tissue Res 317, 65–77 (2004). https://doi.org/10.1007/s00441-004-0900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0900-z

Keywords

Navigation