Skip to main content

Advertisement

Log in

Serum-free cryopreservation of porcine hepatocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The use of porcine hepatocytes in xenotransplantation, bioartificial liver support or pharmacological approaches demands serum-free cryopreservation protocols yielding high quality, viable, functional hepatocytes. Here, primary porcine hepatocytes were frozen without serum in liquid nitrogen by the use of a computer-assisted freezing device. After thawing, more than 90% of the initial hepatocytes were lost, in part because of damage to genomic DNA. When cryoprotectants were used, the loss was lowered to 70% of the initial cell number; 90% of the remaining cells excluded trypan blue indicating a high degree of viability. Cells were seeded serum-free onto collagen-coated plastic dishes to determine proliferation and retainment of specific functions representing prominent features of hepatocytes in vivo. Whereas no cells adhered to the substratum effectively in conventional culture medium, the addition of conditioned medium derived from hepatic non-parenchymal cells improved attachment. Cells proliferated, retained hepatocyte-specific functions, such as urea production and cytochrome P450 activity, and expressed liver-specific genes to levels observed in non-cryopreserved hepatocytes. Thus, serum-free cryopreserved primary porcine hepatocytes may serve as a valid source of cells for downstream applications. The cells seem to function adequately when an appropriate environment is chosen for recovery after cryopreservation, an ultimate demand for the clinical application of human hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–D
Fig. 4
Fig. 5
Fig. 6
Fig. 7A–C
Fig. 8

Similar content being viewed by others

References

  • Alexandre E, Viollon-Abadie C, David P, Gandillet A, Coassolo P, Heyd B, Mantion G, Wolf P, Bachellier P, Jaeck D, Richert L (2002) Cryopreservation of adult human hepatocytes obtained from resected liver biopsies. Cryobiology 44:103–113

    Article  CAS  PubMed  Google Scholar 

  • Arikura J, Kobayashi N, Okitsu T, Noguchi H, Totsugawa T, Watanabe T, Matsumura T, Maruyama M, Kosaka Y, Tanaka N, Onodera K, Kasai S (2002) UW solution: a promising tool for cryopreservation of primarily isolated rat hepatocytes. J Hepatobiliary Pancreat Surg 9:742–749

    Article  PubMed  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    CAS  PubMed  Google Scholar 

  • Berthou L, Langouet S, Grude P, Denefle P, Branellec D, Guillouzo A (1998) Negative regulation of Apo A-I gene expression by retinoic acid in rat hepatocytes maintained in a coculture system. Biochim Biophys Acta 1391:329–336

    Article  CAS  PubMed  Google Scholar 

  • Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, McGavran L, Ostrowska A, Durham J (2000) Hepatocyte transplantation in acute liver failure. Liver Transpl 6:32–40

    CAS  PubMed  Google Scholar 

  • Canaple L, Nurdin N, Angelova N, Hunkeler D, Desvergne B (2001) Development of a coculture model of encapsulated cells. Ann N Y Acad Sci 944:350–361

    CAS  PubMed  Google Scholar 

  • Chen Z, Ding Y, Zhang H (2001) Cryopreservation of suckling pig hepatocytes. Ann Clin Lab Sci 31:391–398

    CAS  PubMed  Google Scholar 

  • Chesne C, Guillouzo A (1988) Cryopreservation of isolated rat hepatocytes: a critical evaluation of freezing and thawing conditions. Cryobiology 25:323–330

    CAS  PubMed  Google Scholar 

  • Chesne C, Guyomard C, Fautrel A, Poullain MG, Fremond B, De Jong H, Guillouzo A (1993) Viability and function in primary culture of adult hepatocytes from various animal species and human beings after cryopreservation. Hepatology 18:406–414

    CAS  PubMed  Google Scholar 

  • Choucroun P, Gillet D, Dorange G, Sawicki B, Dewitte JD (2001) Comet assay and early apoptosis. Mutat Res 478:89–96

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury JR, Chowdhury NR, Strom SC, Kaufman SS, Horslen S, Fox IJ (1998) Human hepatocyte transplantation: gene therapy and more? Pediatrics 102:647–648

    CAS  PubMed  Google Scholar 

  • Crocker CL (1967) Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am J Med Technol 33:361–365

    CAS  PubMed  Google Scholar 

  • Dandri M, Burda MR, Gocht A, Torok E, Pollok JM, Rogler CE, Will H, Petersen J (2001) Woodchuck hepatocytes remain permissive for hepadnavirus infection and mouse liver repopulation after cryopreservation. Hepatology 34:824–833

    Article  CAS  PubMed  Google Scholar 

  • Dunn TB, Kumins NH, Raofi V, Holman DM, Mihalov M, Blanchard J, Law WR, Rastellini C, Benedetti E (2000) Multiple intrasplenic hepatocyte transplantations in the Dalmatian dog. Surgery 127:193–199

    Google Scholar 

  • Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, Dorko K, Sauter BV, Strom SC (1998) Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426

    CAS  PubMed  Google Scholar 

  • Fu T, Guo D, Huang X, O’Gorman MR, Huang L, Crawford SE, Soriano HE (2001) Apoptosis occurs in isolated and banked primary mouse hepatocytes. Cell Transplant 10:59–66

    CAS  PubMed  Google Scholar 

  • Gebhardt R, Hengstler JG, Muller D, Glockner R, Buenning P, Laube B, Schmelzer E, Ullrich M, Utesch D, Hewitt N, Ringel M, Hilz BR, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213

    Article  CAS  PubMed  Google Scholar 

  • Guguen-Guillouzo C, Clement B, Baffet G, Beaumont C, Morel-Chany E, Glaise D, Guillouzo A (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp Cell Res 143:47–54

    CAS  PubMed  Google Scholar 

  • Guyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A (1996) Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol Appl Pharmacol 141:349–356

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Ringel M, Biefang K, Hammel S, Milbert U, Gerl M, Klebach M, Diener B, Platt KL, Bottger T, Steinberg P, Oesch F (2000a) Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem Biol Interact 125:51–73

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Bottger T, Oesch F (2000b) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    Google Scholar 

  • Hewitt NJ, Buhring KU, Dasenbrock J, Haunschild J, Ladstetter B, Utesch D (2001) Studies comparing in vivo: in vitro metabolism of three pharmaceutical compounds in rat, dog, monkey, and human using cryopreserved hepatocytes, microsomes, and collagen gel immobilized hepatocyte cultures. Drug Metab Dispos 29:1042–1050

    CAS  PubMed  Google Scholar 

  • Houle R, Raoul J, Levesque JF, Pang KS, Nicoll-Griffith DA, Silva JM (2003) Retention of transporter activities in cryopreserved, isolated rat hepatocytes. Drug Metab Dispos 31:447–451

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Mitaka T, Harada K, Sugimoto S, Hirata K, Mochizuki Y (2002) Proliferation of rat small hepatocytes after long-term cryopreservation. J Hepatol 37:7–14

    Article  CAS  PubMed  Google Scholar 

  • Jamal HZ, Weglarz TC, Sandgren EP (2000) Cryopreserved mouse hepatocytes retain regenerative capacity in vivo. Gastroenterology 118:390–394

    CAS  PubMed  Google Scholar 

  • Koebe HG, Dahnhardt C, Muller-Hocker J, Wagner H, Schildberg FW (1996) Cryopreservation of porcine hepatocyte cultures. Cryobiology 33:127–141

    Article  CAS  PubMed  Google Scholar 

  • Kunieda T, Maruyama M, Okitsu T, Shibata N, Takesue M, Totsugawa T, Kosaka Y, Arata T, Kobayashi K, Ikeda H, Oshita M, Nakaji S, Ohmoto K, Yamamoto S, Kurabayashi Y, Kodama M, Tanaka N, Kobayashi N (2003) Cryopreservation of primarily isolated porcine hepatocytes with UW solution. Cell Transplant 12:607–616

    PubMed  Google Scholar 

  • Kuri-Harcuch W, Mendoza-Figueroa T (1989) Cultivation of adult rat hepatocytes on 3T3 cells: expression of various liver differentiated functions. Differentiation 41:148–157

    CAS  PubMed  Google Scholar 

  • Lubet RA, Nims RW, Mayer RT, Cameron JW, Schechtman LM (1985) Measurement of cytochrome P-450 dependent dealkylation of alkoxyphenoxazones in hepatic S9s and hepatocyte homogenates: effects of dicumarol. Mutat Res 142:127–131

    CAS  PubMed  Google Scholar 

  • Maganto P, Cienfuegos JA, Santamaria L, Rodriguez V, Eroles G, Andres S, Castillo-Olivares JL, Municio AM (1990) Auxiliary liver by transplanted frozen-thawed hepatocytes. J Surg Res 48:24–32

    CAS  PubMed  Google Scholar 

  • Malhi H, Gupta S (2001) Hepatocyte transplantation: new horizons and challenges. J Hepatobiliary Pancreat Surg 8:40–50

    Article  CAS  PubMed  Google Scholar 

  • McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 288:47–63

    CAS  PubMed  Google Scholar 

  • Muller P, Stock T, Bauer S, Wolff I (2002) Genotoxicological characterisation of complex mixtures. Genotoxic effects of a complex mixture of perhalogenated hydrocarbons. Mutat Res 515:99–109

    CAS  PubMed  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    CAS  PubMed  Google Scholar 

  • Puschel GP, Jungermann K (1994) Integration of function in the hepatic acinus: intercellular communication in neural and humoral control of liver metabolism. Prog Liver Dis 12:19–46

    CAS  PubMed  Google Scholar 

  • Rialland L, Guyomard C, Scotte M, Chesne C, Guillouzo A (2000) Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol Toxicol 16:105–116

    Article  CAS  PubMed  Google Scholar 

  • Ries K, Krause P, Solsbacher M, Schwartz P, Unthan-Fechner K, Christ B, Markus PM, Probst I (2000) Elevated expression of hormone-regulated rat hepatocyte functions in a new serum-free hepatocyte-stromal cell coculture model. In Vitro Cell Dev Biol Anim 36:502–512

    Article  CAS  PubMed  Google Scholar 

  • Runge DM, Runge D, Foth H, Strom SC, Michalopoulos GK (1999) STAT 1alpha/1beta, STAT 3 and STAT 5: expression and association with c-MET and EGF-receptor in long-term cultures of human hepatocytes. Biochem Biophys Res Commun 265:376–381

    Article  CAS  PubMed  Google Scholar 

  • Sarkis R, Honiger J, Chafai N, Baudrimont M, Sarkis K, Delelo R, Becquemont L, Benoist S, Balladur P, Capeau J, Nordlinger B (2001) Semiautomatic macroencapsulation of fresh or cryopreserved porcine hepatocytes maintain their ability for treatment of acute liver failure. Cell Transplant 10:601–607

    CAS  PubMed  Google Scholar 

  • Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Muller AR, Steinmuller T, Denner J, Neuhaus P, Gerlach JC (2003) Clinical extracorporeal hybrid liver support—phase I study with primary porcine liver cells. Xenotransplantation 10:460–469

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    CAS  PubMed  Google Scholar 

  • Sheil AG (2002) Xenogeneic bioartificial liver support: where are we now? Transplant Proc 34:2493–2495

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Day SH, Nicoll-Griffith DA (1999) Induction of cytochrome-P450 in cryopreserved rat and human hepatocytes. Chem Biol Interact 121:49–63

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  PubMed  Google Scholar 

  • Sousa G de, Nicolas F, Placidi M, Rahmani R, Benicourt M, Vannier B, Lorenzon G, Mertens K, Coecke S, Callaerts A, Rogiers V, Khan S, Roberts P, Skett P, Fautrel A, Chesne C, Guillouzo A (1999) A multi-laboratory evaluation of cryopreserved monkey hepatocyte functions for use in pharmaco-toxicology. Chem Biol Interact 121:77–97

    Article  CAS  PubMed  Google Scholar 

  • Southard JH (2002) Hypothermic and cryo-preservation of hepatocytes. Single Topic Conference, Warrenton, Va., USA

  • Steinberg P, Fischer T, Kiulies S, Biefang K, Platt KL, Oesch F, Bottger T, Bulitta C, Kempf P, Hengstler J (1999) Drug metabolizing capacity of cryopreserved human, rat, and mouse liver parenchymal cells in suspension. Drug Metab Dispos 27:1415–1422

    Google Scholar 

  • Strom SC, Chowdhury JR, Fox IJ (1999) Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis 19:39–48

    CAS  PubMed  Google Scholar 

  • Sundback CA, Vacanti JP (2000) Alternatives to liver transplantation: from hepatocyte transplantation to tissue-engineered organs. Gastroenterology 118:438–442

    CAS  PubMed  Google Scholar 

  • Swales NJ, Luong C, Caldwell J (1996) Cryopreservation of rat and mouse hepatocytes. I. Comparative viability studies. Drug Metab Dispos 24:1218–1223

    CAS  PubMed  Google Scholar 

  • Utesch D, Oesch F (1992) Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture. In Vitro Cell Dev Biol 28A:193–198

    CAS  PubMed  Google Scholar 

  • Vian L, Yusuf A, Guyomard C, Cano JP (2002) The liverbeads as a tool for the comet assay. Mutat Res 519:163–170

    Article  CAS  PubMed  Google Scholar 

  • Vreugdenhil PK, Marsh DC, Southard JH (1996) Comparison of isolated hepatocytes and tissue slices for study of liver hypothermic preservation/reperfusion injury. Cryobiology 33:430–435

    Article  CAS  PubMed  Google Scholar 

  • Watanabe FD, Arnaout WS, Ting P, Navarro A, Khalili T, Kamohara Y, Kahaku E, Rozga J, Demetriou AA (1999) Artificial liver. Transplant Proc 31:371–373

    Article  CAS  PubMed  Google Scholar 

  • Yagi K, Yamada C, Serada M, Sumiyoshi N, Michibayashi N, Miura Y, Mizoguchi T (1995) Reciprocal regulation of prothrombin secretion and tyrosine aminotransferase induction in hepatocytes. Eur J Biochem 227:753–756

    CAS  PubMed  Google Scholar 

  • Yagi T, Hardin JA, Valenzuela YM, Miyoshi H, Gores GJ, Nyberg SL (2001) Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology 33:1432–1440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Sabine Ebensing and Madlen Hempel is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Aurich, H., Wenkel, R. et al. Serum-free cryopreservation of porcine hepatocytes. Cell Tissue Res 317, 45–56 (2004). https://doi.org/10.1007/s00441-004-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0894-6

Keywords

Navigation