Skip to main content
Log in

Random walk on barely supercritical branching random walk

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Let \({\mathcal {T}}\) be a supercritical Galton–Watson tree with a bounded offspring distribution that has mean \(\mu >1\), conditioned to survive. Let \(\varphi _{\mathcal {T}}\) be a random embedding of \({\mathcal {T}}\) into \({\mathbb {Z}}^d\) according to a simple random walk step distribution. Let \({\mathcal {T}}_p\) be percolation on \({\mathcal {T}}\) with parameter p, and let \(p_c = \mu ^{-1}\) be the critical percolation parameter. We consider a random walk \((X_n)_{n \ge 1}\) on \({\mathcal {T}}_p\) and investigate the behavior of the embedded process \(\varphi _{{\mathcal {T}}_p}(X_n)\) as \(n\rightarrow \infty \) and simultaneously, \({\mathcal {T}}_p\) becomes critical, that is, \(p=p_n\searrow p_c\). We show that when we scale time by \(n/(p_n-p_c)^3\) and space by \(\sqrt{(p_n-p_c)/n}\), the process \((\varphi _{{\mathcal {T}}_p}(X_n))_{n \ge 1}\) converges to a d-dimensional Brownian motion. We argue that this scaling can be seen as an interpolation between the scaling of random walk on a static random tree and the anomalous scaling of processes in critical random environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that this is a different process than if we were to consider a simple random walk on the subgraph of \({\mathbb {Z}}^d\) traced out by the branching random walk, as is for instance the topic of [7] (for a different kind of tree): random walk on the trace is, in our setting, a vacuous complication, because \({\mathcal {T}}\) is supercritical, and thus grows at an exponential rate, while \({\mathbb {Z}}^d\) has polynomial growth, so that \(\varphi _{{\mathcal {T}}}({\mathcal {T}}) = {\mathbb {Z}}^d\)\({\mathbb {P}}_p\)-almost surely.

References

  1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs (2014). https://www.stat.berkeley.edu/~aldous/RWG/book.pdf

  2. Aldous, D.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Athreya, S., Löhr, W., Winter, A.: Invariance principle for variable speed random walks on trees. Ann. Probab. 45(2), 625–667 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972). Die Grundlehren der mathematischen Wissenschaften, Band 196

    MATH  Google Scholar 

  5. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1992). With an appendix by Paul Erdős, A Wiley-Interscience Publication

    Google Scholar 

  7. Arous, G.B., Cabezas, M., Fribergh, A.: Scaling limit for the ant in a simple high-dimensional labyrinth. Probab. Theory Relat. Fields 174(1–2), 553–646 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Arous, G.B., Cabezas, M., Fribergh, A.: Scaling limit for the ant in high-dimensional labyrinths. Commun. Pure Appl. Math. 72(4), 669–763 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Arous, G.B., Fribergh, A.: Biased random walks on random graphs. In: Sidoravicius, V., Smirnov, S. (eds.) Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, vol. 91, pp. 99–153. American Mathematical Society, Providence (2016)

    Google Scholar 

  10. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137(1–2), 83–120 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Berger, N., Gantert, N., Peres, Y.: The speed of biased random walk on percolation clusters. Probab. Theory Relat. Fields 126(2), 221–242 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999). A Wiley-Interscience Publication

    MATH  Google Scholar 

  13. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278(2), 385–431 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chen, H., Romano, J.P.: An invariance principle for triangular arrays of dependent variables with application to autocovariance estimation. Can. J. Stat. 27(2), 329–343 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Croydon, D.A.: Hausdorff measure of arcs and Brownian motion on Brownian spatial trees. Ann. Probab. 37(3), 946–978 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996/97)

  18. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43(2), 639–681 (2015)

    MathSciNet  MATH  Google Scholar 

  19. de Gennes, P.G.: Percolation: un concept unificateur. La Recherche 7, 919–927 (1976)

    Google Scholar 

  20. Dembo, A., Gantert, N., Peres, Y., Zeitouni, O.: Large deviations for random walks on Galton–Watson trees: averaging and uncertainty. Probab. Theory Relat. Fields 122(2), 241–288 (2002)

    MathSciNet  MATH  Google Scholar 

  21. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: Invariance principle for reversible Markov processes with application to diffusion in the percolation regime. In: Durrett, R. (ed.) Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984), Volume 41 of Contemp. Math., pp. 71–85. Amer. Math. Soc., Providence (1985)

  22. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3–4), 787–855 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Derbez, E., Slade, G.: The scaling limit of lattice trees in high dimensions. Commun. Math. Phys. 193(1), 69–104 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Google Scholar 

  25. Evans, S.N.: Two representations of a conditioned superprocess. Proc. R. Soc. Edinb. Sect. A 123(5), 959–971 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in \(d>10\). Electron. J. Probab. 22(43), 65 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Gantert, N., Guo, X., Nagel, J.: Einstein relation and steady states for the random conductance model. Ann. Probab. 45(4), 2533–2567 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Grimmett, G., Kesten, H.: Random electrical networks on complete graphs ii: proofs. arXiv preprint arXiv:math/0107068 (2001)

  29. Gantert, N., Mathieu, P., Piatnitski, A.: Einstein relation for reversible diffusions in a random environment. Commun. Pure Appl. Math. 65(2), 187–228 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Guo, X.: Einstein relation for random walks in random environment. Ann. Probab. 44(1), 324–359 (2016)

    MathSciNet  MATH  Google Scholar 

  31. van der Hofstad, R.: Infinite canonical super-Brownian motion and scaling limits. Commun. Math. Phys. 265(3), 547–583 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128(2), 333–391 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Hara, T., Slade, G.: The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Stat. Phys. 99(5–6), 1075–1168 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Hulshof, T.: The one-arm exponent for mean-field long-range percolation. Electron. J. Probab. 20(115), 26 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. Springer, Berlin (2017)

    MATH  Google Scholar 

  36. Heydenreich, M., van der Hofstad, R., Hulshof, T.: Random walk on the high-dimensional IIC. Commun. Math. Phys. 329(1), 57–115 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Heydenreich, M., van der Hofstad, R., Sakai, A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132(6), 1001–1049 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Janson, S., Marckert, J.-F.: Convergence of discrete snakes. J. Theor. Probab. 18(3), 615–647 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Stat. 22(4), 425–487 (1986)

    MathSciNet  MATH  Google Scholar 

  40. Kesten, H.: Branching random walk with a critical branching part. J. Theor. Probab. 8(4), 921–962 (1995)

    MathSciNet  MATH  Google Scholar 

  41. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635–654 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Kipnis, C., Srinivasa Varadhan, S.R.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Lyons, R., Peres, Y.: Probability on Trees and Networks, Volume 42 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York (2016)

    Google Scholar 

  44. Lyons, R., Pemantle, R., Peres, Y.: Ergodic theory on Galton–Watson trees: speed of random walk and dimension of harmonic measure. Ergod. Theory Dyn. Syst. 15(3), 593–619 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Lyons, R., Pemantle, R., Peres, Y.: Biased random walks on Galton–Watson trees. Probab. Theory Relat. Fields 106(2), 249–264 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Lyons, R.: Random walks, capacity and percolation on trees. Ann. Probab. 20(4), 2043–2088 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Mathieu, P., Piatnitski, A.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2085), 2287–2307 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Neuman, E., Zheng, X.: On the maximal displacement of subcritical branching random walks. Probab. Theory Relat. Fields 167(3–4), 1137–1164 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Peres, Y., Zeitouni, O.: A central limit theorem for biased random walks on Galton–Watson trees. Probab. Theory Relat. Fields 140(3–4), 595–629 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Sahimi, M.: Applications of Percolation Theory. Taylor & Francis, London (1994)

    Google Scholar 

  51. Slade, G.: Scaling limits and super-Brownian motion. Not. Am. Math. Soc. 49(9), 1056–1067 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129(2), 219–244 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Stauffer, D.: Introduction to Percolation Theory. Taylor & Francis Ltd, London (1985)

    MATH  Google Scholar 

  54. Sznitman, A.-S., Zerner, M.: A law of large numbers for random walks in random environment. Ann. Probab. 27, 1851–1869 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of J.N. was supported by the Deutsche Forschungsgemeinschaft (DFG) through Grant NA 1372/1. R.H. was supported by NWO through VICI-grant 639.033.806. The work of RvdH and TH is also supported by the Netherlands Organisation for Scientific Research (NWO) through Gravitation-grant NETWORKS-024.002.003. We thank the anonymous referee for a careful reading of the paper and several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nagel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Hofstad, R., Hulshof, T. & Nagel, J. Random walk on barely supercritical branching random walk. Probab. Theory Relat. Fields 177, 1–53 (2020). https://doi.org/10.1007/s00440-019-00942-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00942-0

Keywords

Mathematics Subject Classification

Navigation