Skip to main content
Log in

A simple proof of exponential decay of subcritical contact processes

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

This paper gives a new, simple proof of the known fact that for contact processes on general lattices, in the subcritical regime the expected number of infected sites decays exponentially fast as time tends to infinity. The proof also yields an explicit bound on the survival probability below the critical recovery rate, which shows that the critical exponent associated with this function is bounded from below by its mean-field value. The main idea of the proof is that if the expected number of infected sites decays slower than exponentially, then this implies the existence of a harmonic function that can be used to show that the process survives for any lower value of the recovery rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Jung, P.: On the critical behavior at the lower phase transition of the contact process. Alea 3, 301–320 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Athreya, S.R., Swart, J.M.: Survival of contact processes on the hierarchical group. Probab. Theory Relat. Fields 147(3), 529–563 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezuidenhout, C., Grimmett, G.: Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19(3), 984–1009 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343(2), 725–745 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation on \(\mathbb{Z}^d\) (2015), arXiv:1502.03051 (to appear in L’Enseignement Mathématique, preprint)

  7. Grimmett, G.: Percolation. Grundlehren der Mathematischen Wissenschaften, vol. 321, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  8. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  9. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  10. Menshikov, M.V.: Coincidence of the critical points in percolation problems. Sov. Math. Dokl. 33, 856–859 (1986)

    Google Scholar 

  11. Sturm, A., Swart, J.M.: Subcritical contact processes seen from a typical infected site. Electron. J. Probab. 19(53), 1–46 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Swart, J.M.: Extinction versus unbounded growth. Habilitation Thesis of the University Erlangen-Nürnberg (2007). arXiv:math/0702095v1

  13. Swart, J.M.: The contact process seen from a typical infected site. J. Theoret. Probab. 22(3), 711–740 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Swart.

Additional information

Work sponsored by Grant 16-15238S of the Czech Science Foundation (GA CR).

Appendix A: Transformation of submartingales

Appendix A: Transformation of submartingales

Let \(\mathcal{S}\) be a countable set and let G be a so-called Q-matrix on \(\mathcal{S}\), i.e., \((G(x,y))_{x,y\in \mathcal{S}}\) are real constants such that \(G(x,y)\ge 0\) for \(x\ne y\) and \(\sum _{y\in \mathcal{S}}G(x,y)=0\). For any real function f on \(\mathcal{S}\), we write

$$\begin{aligned} Gf(x):=\sum _{y\in \mathcal{S}}G(x,y)f(y) =\sum _{y\in \mathcal{S}}G(x,y)\big (f(y)-f(x)\big ) \quad (x\in \mathcal{S}), \end{aligned}$$
(32)

whenever the infinite sums are well-defined. Then G is the the generator of a (possibly explosive) continuous-time Markov chain \((X_t)_{t\ge 0}\) in \(\mathcal{S}\). A function h such that \(Gh\ge 0\) is called subharmonic. The following simple lemma says, roughly speaking, that an unbounded, nonnegative subharmonic function that has a sufficiently positive drift and not too large fluctuations can be transformed into a bounded subharmonic function.

Lemma 3

(Transformation of submartingales) Let h be a real function on \(\mathcal{S}\) and let \(\varepsilon >0\). Then the function

$$\begin{aligned} f_\varepsilon (x):=\frac{1}{\varepsilon }\big (1-e^{-\varepsilon h(x)}\big )\quad (x\in \mathcal{S}) \end{aligned}$$
(33)

satisfies \(Gf_\varepsilon \ge 0\) if and only if

$$\begin{aligned} Gh-H_\varepsilon h\ge 0, \end{aligned}$$
(34)

where

$$\begin{aligned} H_\varepsilon h(x):=\sum _{y\in \mathcal{S}}G(x,y)\phi _\varepsilon \big (h(y)-h(x)\big ) \quad \text{ with } \ \phi _\varepsilon (z):=\varepsilon ^{-1}(e^{-\varepsilon z}-1+\varepsilon z).\nonumber \\ \end{aligned}$$
(35)

Proof

Let \(g_\varepsilon (z):=\varepsilon ^{-1}(1-e^{-\varepsilon z})\) \((z\in {\mathbb {R}})\). Then, for any \(z,z_0\in {\mathbb {R}}\),

$$\begin{aligned} g_\varepsilon (z)=g_\varepsilon (z_0)+\big \{(z-z_0)-\phi _\varepsilon (z-z_0)\big \}e^{-\varepsilon z_0}. \end{aligned}$$
(36)

It follows that

$$\begin{aligned} \displaystyle Gf_\varepsilon (x)= & {} \displaystyle \sum _{y\in \mathcal{S}}G(x,y) \big \{g_\varepsilon \big (h(y)\big )-g_\varepsilon \big (h(x)\big )\big \}\nonumber \\= & {} \displaystyle e^{-\varepsilon h(x)}\sum _{y\in \mathcal{S}}G(x,y) \big \{\big (h(y)-h(x)\big )-\phi _\varepsilon \big (h(y)-h(x)\big )\big \}, \end{aligned}$$
(37)

which is nonnegative if and only if (34) holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swart, J.M. A simple proof of exponential decay of subcritical contact processes. Probab. Theory Relat. Fields 170, 1–9 (2018). https://doi.org/10.1007/s00440-016-0741-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0741-1

Keywords

Mathematics Subject Classification

Navigation