Akinsal EC, Baydilli N, Dogan ME, Ekmekcioglu O (2018) Comorbidity of the congenital absence of the vas deferens. Andrologia 50:e12994. https://doi.org/10.1111/and.12994
Article
Google Scholar
Anguiano A, Oates RD, Amos JA et al (1992) Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 267:1794–1797
CAS
Article
Google Scholar
Augarten A, Yahav Y, Kerem BS et al (1994) Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet 344:1473–1474
CAS
Article
Google Scholar
Balenga N, Azimzadeh P, Hogue JA, Staats PN et al (2016) Orphan adhesion GPCR GPR64/ADGRG2 is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J Bone Miner Res 32(3):654–666. https://doi.org/10.1002/jbmr.3023
CAS
Article
PubMed
PubMed Central
Google Scholar
Bergougnoux A, Deletang K, Pommier A et al (2019) Functional characterization and phenotypic spectrum of three recurrent disease-causing deep intronic variants of the CFTR gene. J Cyst Fibros 18(4):468–475. https://doi.org/10.1016/j.jcf.2018.10.012
CAS
Article
PubMed
Google Scholar
Bombieri C, Claustres M, De BK et al (2011) Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros 10:S86–S102. https://doi.org/10.1016/S1569-1993(11)60014-3
CAS
Article
PubMed
Google Scholar
Breton S, Ruan YC, Park YJ et al (2016) Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl 18:3–9. https://doi.org/10.4103/1008-682X.165946
CAS
Article
PubMed
Google Scholar
Brewster SF (1985) The development and differentiation of human seminal vesicles. J Anat 143:45–55
CAS
PubMed
PubMed Central
Google Scholar
Browne JA, Yang R, Leir SH, Eggener SE, Harris A (2016) Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod 22:69–82. https://doi.org/10.1093/molehr/gav066
CAS
Article
PubMed
Google Scholar
Cai H, Qing X, Niringiyumukiza JD et al (2019) CFTR variants and renal abnormalities in males with congenital unilateral absence of the vas deferens (CUAVD): a systematic review and meta-analysis of observational studies. Genet Med 21:826–836. https://doi.org/10.1038/s41436-018-0262-7
CAS
Article
PubMed
Google Scholar
Carroll TJ, Park JS, Hayashi S et al (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292. https://doi.org/10.1016/j.devcel.2005.05.016
CAS
Article
PubMed
Google Scholar
Casals T, Bassas L, Egozcue S et al (2000) Heterogeneity for mutations in the CFTR gene and clinical correlations in patients with congenital absence of the vas deferens. Hum Reprod 15(7):1476–1483. https://doi.org/10.1093/humrep/15.7.1476
CAS
Article
PubMed
Google Scholar
Chiang H, Lu J, Liu C, Wu Y, Wu C (2009) CFTR (TG)m(T)n polymorphism in patients with CBAVD in a population expressing low incidence of cystic fibrosis. Clin Genet 76:282–286. https://doi.org/10.1111/j.1399-0004.2009.01258.x
CAS
Article
PubMed
Google Scholar
Chiang HS, Wang YY, Lin YH, Wu YN (2019) The role of SLC9A3 in Taiwanese patients with congenital bilateral absence of vas deferens (CBAVD). J Formos Med Assoc. https://doi.org/10.1016/j.jfma.2019.01.019
Article
PubMed
Google Scholar
Chillón M, Casals T, Mercier B et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332:1475–1480. https://doi.org/10.1056/NEJM199506013322204
Article
PubMed
Google Scholar
Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S (2001) Aberrant CFTR-dependent HCO3− transport in mutations associated with cystic fibrosis. Nature 410(6824):94–97. https://doi.org/10.1038/35065099
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3:151–156. https://doi.org/10.1038/ng0293-151
CAS
Article
PubMed
Google Scholar
Claustres M, Guittard C, Bozon D (2000) Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France. Hum Mutat 16:143–156. https://doi.org/10.1002/1098-1004(200008)16:2%3c143:AID-HUMU7%3e3.0.CO;2-J
CAS
Article
PubMed
Google Scholar
Claustres M, Thèze C, des Georges M, Baux D, Girodon E, Bienvenu T, Audrezet MP, Dugueperoux I, Férec C, Lalau G, Pagin A, Kitzis A, Thoreau V, Gaston V, Bieth E, Malinge MC, Reboul MP, Fergelot P, Lemonnier L, Mekki C, Fanen P, Bergougnoux A, Sasorith S, Raynal C, Bareil C (2017) CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat 38(10):1297–1315
CAS
Article
Google Scholar
Culard JF, Desgeorges M, Costa P et al (1994) Analysis of the whole CFTR coding regions and splice junctions in azoospermic men with congenital bilateral aplasia of epididymis or vas deferens. Hum Genet 93(4):467–470
CAS
Article
Google Scholar
Cuppens H, Lin W, Jaspers M et al (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest 101:487–496. https://doi.org/10.1172/JCI639
CAS
Article
PubMed
PubMed Central
Google Scholar
Daudin M, Bieth E, Bujan L, Massat G, Pontonnier F, Mieusset R (2000) Congenital bilateral absence of the vas deferens: clinical characteristics, biological parameters, cystic fibrosis transmembrane conductance regulator gene mutations, and implications for genetic counselling. Fertil Steril 74:1164–1174. https://doi.org/10.1016/s0015-0282(00)01625-3
CAS
Article
PubMed
Google Scholar
Davies B, Baumann C, Kirchhoff C et al (2004) Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol Cell Biol 24:8642–8648. https://doi.org/10.1128/MCB.24.19.8642-8648.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
De Souza DAS, Faucz FR, Pereira-Ferrari L, Sotomaior VS, Raskin S (2018) Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology 6:127–135. https://doi.org/10.1111/andr.12450
CAS
Article
PubMed
Google Scholar
Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. https://doi.org/10.1016/j.bbrc.2015.07.020pmid:26188515
CAS
Article
PubMed
Google Scholar
Demberg LM, Winkler J, Wilde C, Simon KU et al (2017) Activation of adhesion G protein-coupled receptors: agonist specificity of Stachel sequence-derived peptides. J Biol Chem 292:4383–4394. https://doi.org/10.1074/jbc.M116.763656pmid:28154189
CAS
Article
PubMed
PubMed Central
Google Scholar
di Sant'Agnese PA (1968) Guest editorial–fertility and the young adult with cystic fibrosis. N Engl J Med 279(2):103–105. https://doi.org/10.1056/NEJM196807112790213
Article
PubMed
Google Scholar
Domeniconi RF, Souza AC, Xu B, Washington AM, Hinton BT (2016) Is the epididymis a series of organs placed side by side? Biol Reprod 95:10. https://doi.org/10.1095/biolreprod.116.138768
CAS
Article
PubMed
PubMed Central
Google Scholar
Donohue RE, Fauver HE (1989) Unilateral absence of the vas deferens. A useful clinical sign. JAMA 261(8):1180–1182. https://doi.org/10.1001/jama.1989.03420080100041
CAS
Article
PubMed
Google Scholar
Dumur V, Gervais R, Rigot JM et al (1990) Abnormal distribution of CF deltaF508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet 336:512. https://doi.org/10.1016/0140-6736(90)92066-q
CAS
Article
PubMed
Google Scholar
Edelman A (2014) Cytoskeleton and CFTR. Int J Biochem Cell Biol 52:68–72. https://doi.org/10.1016/j.biocel.2014.03.018
CAS
Article
PubMed
Google Scholar
El Khouri E, Whitfield M, Stouvenel L et al (2018) Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Mol Reprod Dev 85(8–9):682–695. https://doi.org/10.1002/mrd.23055
CAS
Article
PubMed
Google Scholar
Farrell PM (2008) The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 7:450–451. https://doi.org/10.1016/j.jcf.2008.03.007
Article
PubMed
Google Scholar
Farrell PM, White TB, Ren CL et al (2017) Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation. J Pediatr 81S:S4–S15e1. https://doi.org/10.1016/j.jpeds.2016.09.064
Article
Google Scholar
Feng J, Wu X, Zhang Y et al (2019) A novel mutation (−195C%3eA) in the promoter region of CFTR gene is associated with Chinese Congenital Bilateral Absence of Vas Deferens (CBAVD). Gene 30(719):144007. https://doi.org/10.1016/j.gene.2019.144007
CAS
Article
Google Scholar
Gaillard DA, Carré-Pigeon F, Lallemand A (1997) Normal vas deferens in fetuses with cystic fibrosis. J Urol 158(4):1549–1552. https://doi.org/10.1016/S0022-5347(01)64278-2
CAS
Article
PubMed
Google Scholar
Ghieh F, Mitchell V, Mandon-Pepin B, Vialard F (2019) Genetic defects in human azoospermia. Basic Clin Androl 29:4. https://doi.org/10.1186/s12610-019-0086-6
Article
PubMed
PubMed Central
Google Scholar
Goldstein M, Schlossberg S (1988) Men with congenital absence of the vas deferens often have seminal vesicles. J Urol 140:85. https://doi.org/10.1016/S0022-5347(17)41493-5
CAS
Article
PubMed
Google Scholar
Groman JD, Hefferon TW, Casals T et al (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74:176–179. https://doi.org/10.1086/381001
CAS
Article
PubMed
Google Scholar
Hamann J, Aust G, Araç D et al (2015) International Union of Basic and Clinical Pharmacology. XCIV, Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367. https://doi.org/10.1124/pr.114.009647
CAS
Article
PubMed
PubMed Central
Google Scholar
Hunter J (1786) Animal oeconomy, on the glands called vesiculae seminales. In: Palmer JF (ed) The works of John Hunter, vol 4. Longman, Reese, Orm, Brown, Green and Longman, London, 1837, pp 20–34
Jain S, Chen F (2018) Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J 12:382–399. https://doi.org/10.1093/ckj/sfy112
CAS
Article
PubMed
PubMed Central
Google Scholar
Janecke AR, Heinz-Erian P, Yin J et al (2015) Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 24:6614–6623. https://doi.org/10.1093/hmg/ddv367
CAS
Article
PubMed
PubMed Central
Google Scholar
Jequier AM, Ansell ID, Bullimore NJ (1985) Congenital absence of the vasa deferentia presenting with infertility. J Androl 6(1):15–19
CAS
PubMed
Google Scholar
Jin ZW, Abe H, Hinata N et al (2016) Descent of mesonephric duct to the final position of the vas deferens in human embryo and fetus. Anat Cell Biol 49:231–240. https://doi.org/10.5115/acb.2016.49.4.231
Article
PubMed
PubMed Central
Google Scholar
Kaplan E, Shwachman H, Perlmutter AD et al (1968) Reproductive failure in males with cystic fibrosis. N Engl J Med 279:65–69. https://doi.org/10.1056/NEJM196807112790203
CAS
Article
PubMed
Google Scholar
Kerem B, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080. https://doi.org/10.1126/science.2570460
CAS
Article
PubMed
Google Scholar
Khan MJ, Pollock N, Jiang H et al (2018) X-linked ADGRG2 mutation and obstructive azoospermia in a large Pakistani family. Sci Rep 8:16280. https://doi.org/10.1038/s41598-018-34262-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Kirchhoff C, Osterhoff C, Samalecos A (2008) HE6/GPR64 adhesion receptor co-localizes with apical and subapical F-actin scaffold in male excurrent duct epithelia. Reproduction 136:235–245. https://doi.org/10.1530/REP-08-0078
CAS
Article
PubMed
Google Scholar
Kolettis PN, Sandlow JI (2002) Clinical and genetic features of patients with congenital unilateral absence of the vas deferens. Urology 60:1073–1076. https://doi.org/10.1016/S0090-4295(02)01973-8
Article
PubMed
Google Scholar
Krausz C (2011) Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 25:271–285. https://doi.org/10.1016/j.beem.2010.08.006
Article
PubMed
Google Scholar
Kujala M, Hihnala S, Tienari J et al (2007) Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 133:775–784. https://doi.org/10.1530/rep.1.00964
CAS
Article
PubMed
Google Scholar
Kuo Y-M, Duncan JL, Westaway SK et al (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14:49–57. https://doi.org/10.1093/hmg/ddi005
CAS
Article
PubMed
Google Scholar
Laurichesse Delmas H, Kohler M, Doray B et al (2017) Congenital unilateral renal agenesis: prevalence, prenatal diagnosis, associated anomalies. Data from two birth-defect registries. Birth Defects Res 109:1204–1211. https://doi.org/10.1002/bdr2.1065
CAS
Article
PubMed
Google Scholar
Lee CH, Wu CC, Wu YN, Chiang HS (2009) Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 24:748–755. https://doi.org/10.1093/humrep/den413
CAS
Article
PubMed
Google Scholar
Marcorelles P, Gillet D, Friocourt G et al (2012) Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development. Hum Pathol 43(3):390–397. https://doi.org/10.1016/j.humpath.2011.04.031
CAS
Article
PubMed
Google Scholar
McCallum T, Milunsky J, Munarriz R, Carson R, Sadeghi-Nejad H, Oates R (2001) Unilateral renal agenesis associated with congenital bilateral absence of the vas deferens: phenotypic findings and genetic considerations. Hum Reprod 16(2):282–288
CAS
Article
Google Scholar
Mieusset R, Fauquet I, Chauveau D et al (2017) The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling. J Nephrol 30:211–218. https://doi.org/10.1007/s40620-016-0286-5
Article
PubMed
Google Scholar
Mieusset R, Bieth E, Daudin M et al (2020) Male partners of infertile couples with congenital unilateral absence of the vas deferens are mainly non-azoospermic. Andrology 00:1–9. https://doi.org/10.1111/andr.12749
Article
Google Scholar
Miller S, Couture S, James G, Plourde S, Rioux J, Labrecque M (2016) Unilateral absence of vas deferens: prevalence among 23,013 men seeking vasectomy. Int Braz J Urol 42(5):1010–1017
Article
Google Scholar
Nelson RE (1950) Congenital absence of the vas deferens; a review of the literature and report of three cases. J Urol 63:176–182
CAS
Article
Google Scholar
Obermann H, Samalecos A, Osterhoff C, Schröder B, Heller R, Kirchhoff C (2003) HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol Reprod Dev 64:13–26. https://doi.org/10.1002/mrd.10220
CAS
Article
PubMed
Google Scholar
Oppenheimer EH, Esterly JR (1969) Observations on cystic fibrosis of the pancreas. V. Developmental changes in the male genital system. J Pediatr 75(5):806–811. https://doi.org/10.1016/S0022-3476(69)80303-3
CAS
Article
PubMed
Google Scholar
Osterhoff C, Ivell R, Kirchhoff C (1997) Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily. DNA Cell Biol 16:379–389
CAS
Article
Google Scholar
Pagin A, Bergougnoux A, Girodon E et al (2019) Novel ADGRG2 truncating variants in patients with X-linked congenital absence of vas deferens. Andrology 00:1–7. https://doi.org/10.1111/andr.12744
CAS
Article
Google Scholar
Patat O, Pagin A, Siegfried A et al (2016) Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an X-linked congenital bilateral absence of vas deferens. Am J Hum Genet 99:437–442. https://doi.org/10.1016/j.ajhg.2016.06.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Patrizio P, Zielenski J (1996) Congenital absence of the vas deferens: a mild form of cystic fibrosis. Mol Med Today 2(1):24–31. https://doi.org/10.1016/1357-4310(96)88755-7
CAS
Article
PubMed
Google Scholar
Pierucci-Alves F, Akoyev V, Stewart JC 3rd et al (2011) Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85(3):442–451. https://doi.org/10.1095/biolreprod.111.090860
CAS
Article
PubMed
PubMed Central
Google Scholar
Pietrement C, Da Silva N, Silberstein C et al (2008) Role of NHERF1, cystic fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J Biol Chem 283:2986–2996. https://doi.org/10.1074/jbc.M704678200
CAS
Article
PubMed
Google Scholar
Plyler ZE, Birket SE, Schultz BD et al (2019) Non-obstructive vas deferens and epididymis loss in cystic fibrosis rats. Mech Dev 155:15–26. https://doi.org/10.1016/j.mod.2018.10.002
CAS
Article
PubMed
Google Scholar
Radpour R, Gourabi H, Gilani MA, Dizaj AV (2008) Correlation between CFTR gene mutations in Iranian men with congenital absence of the vas deferens and anatomical genital phenotype. J Androl 29:35–40. https://doi.org/10.2164/jandrol.107.002972
CAS
Article
PubMed
Google Scholar
Ratbi I, Legendre M, Niel F et al (2007) Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling. Hum Reprod 22:1285–1291
CAS
Article
Google Scholar
Reverdin JL (1870) Absence du rein, de l’uretère, du canal déférent et de la vésicule séminale du côté gauche; existence des deux testicules dans les bourses. Bull Soc Anat Paris 15:325–326
Google Scholar
Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073. https://doi.org/10.1126/science.2475911
CAS
Article
PubMed
Google Scholar
Ruan YC, Wang Y, Da Silva N et al (2014) CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci 127:4396–4408. https://doi.org/10.1242/jcs.148098
CAS
Article
PubMed
PubMed Central
Google Scholar
Schlegel PN, Shin D, Goldstein M (1996) Urogenital anomalies in men with congenital absence of the vas deferens. J Urol 155(5):1644–1648
CAS
Article
Google Scholar
Schwarzer JU, Schwarz M (2012) Significance of CFTR gene mutations in patients with congenital aplasia of vas deferens with special regard to renal aplasia. Andrologia 44:305–307. https://doi.org/10.1111/j.1439-0272.2012.01281.x
CAS
Article
PubMed
Google Scholar
Seidler U, Singh AK, Cinar A et al (2009) The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165:249–260. https://doi.org/10.1111/j.1749-6632.2009.04046.x
CAS
Article
PubMed
Google Scholar
Shapiro E, Goldfarb DA, Ritchey ML (2003) The congenital and acquired solitary kidney. Rev Urol 5(1):2–8
PubMed
PubMed Central
Google Scholar
Sharma H, Mavuduru RS, Singh SK, Prasad R (2014) Increased frequency of CFTR gene mutations identified in Indian infertile men with non-CBAVD obstructive azoospermia and spermatogenic failure. Gene 548:43–47. https://doi.org/10.1016/j.gene.2014.07.005
CAS
Article
PubMed
Google Scholar
Shen Y, Yue H-X, Li F-P, Hu F-Y et al (2019) SCNN1B and CA12 play vital roles in occurrence of congenital bilateral absence of vas deferens (CBAVD). Asian J Androl 21:525–527. https://doi.org/10.4103/aja.aja_112_18
CAS
Article
PubMed
PubMed Central
Google Scholar
Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587. https://doi.org/10.1093/humupd/dmw015
CAS
Article
PubMed
Google Scholar
Sun F, Hug MJ, Bradbury NA et al (2000) Protein kinase A associates with cystic fibrosis transmembrane conductance regulator via an interaction with ezrin. J Biol Chem 275(19):14360–14366. https://doi.org/10.1074/jbc.275.19.14360
CAS
Article
PubMed
Google Scholar
Taulan M, Girardet A, Guittard C et al (2007) Large genomic rearrangements in the CFTR gene contribute to CBAVD. BMC Med Genet 8:22
Article
Google Scholar
Tian X, Liu Y, Yang J et al (2016) p.G970D is the most frequent CFTR mutation in Chinese patients with cystic fibrosis. Hum Genome Var 3:15063. https://doi.org/10.1038/hgv.2015.63
Article
PubMed
PubMed Central
Google Scholar
Valman HB, France NE (1969) The vas deferens in cystic fibrosis. Lancet 2:566–567. https://doi.org/10.1016/S0140-6736(69)90263-3
CAS
Article
PubMed
Google Scholar
Wang YY, Lin YH, Wu YN et al (2017) Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice. PLoS Genet 13(4):e1006715. https://doi.org/10.1371/journal.pgen.1006715
CAS
Article
PubMed
PubMed Central
Google Scholar
Wedenoja S, Khamaysi A, Shimshilashvili L et al (2017) A missense mutation in SLC26A3 is associated with human male subfertility and impaired activation of CFTR. Sci Rep 7(1):14208. https://doi.org/10.1038/s41598-017-14606-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Weiske WH, Salzler N, Schroeder-Printzen I, Weidner W (2000) Clinical findings in congenital absence of the vasa deferentia. Andrologia 32:13–18. https://doi.org/10.1111/j.1439-0272.2000.tb02859.x
CAS
Article
PubMed
Google Scholar
Woolf AS, Hillman KA (2007) Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 99(1):17–21. https://doi.org/10.1111/j.1464-410X.2006.06504.x
CAS
Article
PubMed
Google Scholar
Wu CC, Hsieh-Li HM, Lin YM, Chiang HS (2004) Cystic fibrosis transmembrane conductance regulator gene screening and clinical correlation in Taiwanese males with congenital bilateral absence of the vas deferens. Hum Reprod 19:250–253. https://doi.org/10.1093/humrep/deh073
CAS
Article
PubMed
Google Scholar
Wu YN, Lin YH, Chiang HS (2018) SLC9A3 is a novel pathogenic gene in Taiwanese males with congenital bilateral absence of the vas deferens. Eur Urol Suppl 17:e1092. https://doi.org/10.1016/S1569-9056(18)31593-8
Article
Google Scholar
Wu YN, Chen KC, Wu CC, Lin YH, Chiang HS (2019) SLC9A3 affects vas deferens development and associates with taiwanese congenital bilateral absence of the vas deferens. Bio Med Res Int. https://doi.org/10.1155/2019/3562719
Article
Google Scholar
Yang X, Sun Q, Yuan P et al (2015) Novel mutations and polymorphisms in the CFTR gene associated with three subtypes of congenital absence of vas deferens. Fertil Steril 104:1268–1275. https://doi.org/10.1016/j.fertnstert.2015.07.1143
CAS
Article
PubMed
Google Scholar
Yang B, Wang J, Zhang W et al (2017) Pathogenic role of ADGRG2 in CBAVD patients replicated in Chinese population. Andrology 5:954–957. https://doi.org/10.1111/andr.12407
CAS
Article
PubMed
Google Scholar
Yang Y, Guo J, Dai L et al (2018) XRCC2 mutation causes meiotic arrest, azoospermia and infertility. J Med Genet 55:628–636. https://doi.org/10.1136/jmedgenet-2017-105145
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu J, Chen Z, Ni Y, Li Z (2012) CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod 27:25–35. https://doi.org/10.1093/humrep/der377
CAS
Article
PubMed
Google Scholar
Yuan P, Liang ZK, Liang H et al (2019) Expanding the phenotypic and genetic spectrum of Chinese patients with congenital absence of vas deferens bearing CFTR and ADGRG2 alleles. Andrology 7:329–340. https://doi.org/10.1111/andr.12592
CAS
Article
PubMed
Google Scholar
Zhang DL, Sun YJ, Ma ML et al (2018) Gq activity-and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife. https://doi.org/10.7554/eLife.33432
Article
PubMed
PubMed Central
Google Scholar