Skip to main content

Advertisement

Log in

An update on the genetics of ocular coloboma

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouzeid H, Meire FM, Osman I, ElShakankiri N, Bolay S, Munier FL et al (2009) A new locus for congenital cataract, microcornea, microphthalmia, and atypical iris coloboma maps to chromosome 2. Ophthalmology 116:154–162

    Article  PubMed  Google Scholar 

  • Acharya M, Huang L, Fleisch VC, Allison WT, Walter MA (2011) A complex regulatory network of transcription factors critical for ocular development and disease. Hum Mol Genet 20:1610–1624

    Article  CAS  PubMed  Google Scholar 

  • Adler R, Belecky-Adams TL (2002) The role of bone morphogenetic proteins in the differentiation of the ventral optic cup. Development 129:3161–3171

    CAS  PubMed  Google Scholar 

  • Alldredge A, Fuhrmann S (2016) Loss of Axin2 causes ocular defects during mouse eye development. Invest Ophthalmol Vis Sci 57:5253–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez Y, Cederlund ML, Cottell DC, Bill BR, Ekker SC, Torres-Vazquez J et al (2007) Genetic determinants of hyaloid and retinal vasculature in zebrafish. BMC Dev Biol 7:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma N, Yamaguchi Y, Handa H, Tadokoro K, Asaka A, Kawase E et al (2003) Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am J Hum Genet 72:1565–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babcock HE, Dutta S, Alur RP, Brocker C, Vasiliou V, Vitale S et al (2014) aldh7a1 regulates eye and limb development in zebrafish. PLoS One 9:e101782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A et al (2008) Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82:304–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri AM, Lupo G, Bulfone A, Andreazzoli M, Mariani M, Fougerousse F et al (1999) A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc Natl Acad Sci USA 96:10729–10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholin T (1673) Acta Medica et Philosophica Hafniensia. Hafnie Sumptibus Petri Haubold, pp 62–63

  • Bar-Yosef U, Abuelaish I, Harel T, Hendler N, Ofir R, Birk OS (2004) CHX10 mutations cause non-syndromic microphthalmia/anophthalmia in Arab and Jewish kindreds. Hum Genet 115:302–309

    Article  CAS  PubMed  Google Scholar 

  • Behesti H, Holt JK, Sowden JC (2006) The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup. BMC Dev Biol 6:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S (2018) The cellular bases of choroid fissure formation and closure. Dev Biol 440:137–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E et al (2012) Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum Mutat 33:457–466

    Article  CAS  PubMed  Google Scholar 

  • Brown JD, Dutta S, Bharti K, Bonner RF, Munson PJ, Dawid IB et al (2009) Expression profiling during ocular development identifies 2 nlz genes with a critical role in optic fissure closure. Proc Natl Acad Sci USA 106:1462–1467

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns CJ, Zhang J, Brown EC, van Bibber AM, van Es JH, Clevers H et al (2008) Investigation of frizzled-5 during embryonic neural development in mouse. Dev Dyn 237:1614–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch AM, Galimberti F, Nehls KE, Roengvoraphoj M, Sekula D, Li B et al (2014) All-trans-retinoic acid antagonizes the hedgehog pathway by inducing patched. Cancer Biol Ther 15:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Tao C, Li H, Ladher R, Gotoh N, Feng GS et al (2013) Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development 140:2711–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M, Ouyang J, Guo J, Lin S, Chen S (2018) Metalloproteinase Adamts16 is required for proper closure of the optic fissure. Invest Ophthalmol Vis Sci 59:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, Nielsen JE et al (2012) First implication of STRA6 mutations in isolated anophthalmia, microphthalmia and coloboma: a new dimension to the STRA6 phenotype. Hum Mutat 32:1417–1462

    Article  CAS  Google Scholar 

  • Chang B, Smith RS, Peters M, Savinova OV, Hawes NL, Zabaleta A et al (2001) Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lewis B, Moran A, Xie T (2012) Cadherin-mediated cell adhesion is critical for the closing of the mouse optic fissure. PLoS One 7:e51705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li H, Gaudenz K, Paulson A, Guo F, Trimble R et al (2013) Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Res 23:254–273

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chou CM, Nelson C, Tarlé SA, Pribila JT, Bardakjian T, Woods S et al (2015) Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukras C, Gaasterland T, Lee P, Gudiseva HV, Chavali VRM, Pullakhandam R et al (2012) Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities. PLoS One 7:e50205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daufenbach DR, Ruttum MS, Pulido JS, Keech RV (1998) Chorioretinal colobomas in a pediatric population. Ophthalmology 105:1455–1458

    Article  CAS  PubMed  Google Scholar 

  • Deml B, Kariminejad A, Borijerdi RHR, Muheisen S, Reis LM, Semina EV (2015) Mutations in MAB21L2 result in ocular coloboma. PLoS Genet 11:e1005002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188:235–247

    Article  CAS  PubMed  Google Scholar 

  • Eccles MR, Schimmenti LA (1999) Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin Genet 56:1–9

    Article  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 92:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favor J, Sandulache R, Neuhäuser-Klaus A, Pretsch W, Chatterjee B, Senft E et al (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 93:13870–13875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferda Percin E, Ploder LA, Yu JJ, Horsford DJ, Rutherford A, Bapat B et al (2000) Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 25:397–401

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann S (2010) Eye morphogenesis and patterning the optic vesicle. Curr Top Dev Biol 93:61–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage PJ, Suh H, Capler SA (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126:4643–4651

    CAS  PubMed  Google Scholar 

  • Gage PJ, Rhoades W, Prucka SK, Hjalt T (2005) Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 46:4200–4208

    Article  PubMed  Google Scholar 

  • Gage PJ, Hurd EA, Martin DM (2015) Mouse models for the dissection of CHD7 functions in eye development and the molecular basis for ocular defects in CHARGE syndrome. Invest Ophthalmol Vis Sci 56:7923–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM et al (2016) Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism and deafness. Am J Hum Genet 99:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graul-Neumann LM, Klopocki E, Adolphs N, Mensah MA, Kress W (2017) Mutation c.943G > T (p.Ala315Ser) in FGFR2 causing a mild phenotype of Crouzon craniofacial dysostosis in a three-generation family. Mol Syndromol 8:93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K (2004) Ocular coloboma: a reassessment in the age of molecular neuroscience. J Med Genet 41:881–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory-Evans CY, Moosajee M, Hodges MD, Mackay DS, Game L, Vargesson N et al (2007) SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet 16:2482–2493

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Dai L, Huang Y, Liao Q, Bai Y (2013) A large novel deletion downstream of PAX6 gene in a Chinese family with ocular coloboma. PLoS ONE 8:e83073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagglund AC, Berghard A, Carlsson L (2013) Canonical wnt/beta-catenin signalling is essential for optic cup formation. PLoS One 8:e81158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulos PG, Gailani MR, Shanley S, Chidambaram A et al (1996) Mutations of the human homolog of Drosophila Patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  CAS  PubMed  Google Scholar 

  • Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T et al (1998) Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–2610

    CAS  PubMed  Google Scholar 

  • Hallonet M, Hollemann T, Pieler T, Gruss P (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 13:3106–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa Y, Takata N, Okuda S, Kawada M, Eiraku M, Sasai Y (2016) Emergence of dorsal-ventral polarity in ESC-derived retinal tissue. Development 143:3895–3906

    Article  CAS  PubMed  Google Scholar 

  • Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J (2015) Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. Elife. https://doi.org/10.7554/elife.05216

    Article  PubMed  PubMed Central  Google Scholar 

  • Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (2005) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187:23–35

    Google Scholar 

  • Hero I (1989) The optic fissure in the normal and microphthalmic mouse. Exp Eye Res 49:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM et al (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525

    Article  CAS  PubMed  Google Scholar 

  • Hindley CJ, Condurat AL, Menon V, Thomas R, Azmitia LM, Davis JA et al (2016) The Hippo pathway member YAP enhances human neural crest cell fate and migration. Sci Rep 6:23208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S et al (2018) Morphogenetic defects underlie superior coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 14:e1007246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holly VL, Widen SA, Famulski JK, Waskiewicz AJ (2014) Sfrp1a and Sfrp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol 388:192–204

    Article  CAS  PubMed  Google Scholar 

  • Holt C (1980) Cell movements in Xenopus eye development. Nature 287:850–852

    Article  CAS  PubMed  Google Scholar 

  • Holt R, Ceroni F, Bax DA, Broadgate S, Gold Diaz D, Santos C et al (2017) New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 7:7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby SJ, Adolph S, Gilbert CE, Dandona I, Foster A (2000) Visual acuity in children with coloboma: clinical features and a new phenotypic classification system. Ophthalmology 107:511–520

    Article  CAS  PubMed  Google Scholar 

  • Hornby SJ, Ward SJ, Gilbert CE (2003) Eye birth defects in humans may be caused by a recessively-inherited genetic predisposition to the maternal effects of vitamin A deficiency during pregnancy. Med Sci Monit 9:23–26

    Google Scholar 

  • Huang XF, Xiang L, Cheng W, Cheng FF, He KW, Zhang BW et al (2018) Mutation of IPO13 causes recessive ocular coloboma, microphthalmia, and cataract. Exp Mol Med 50:53

    Article  CAS  PubMed Central  Google Scholar 

  • Huh S, Hatini V, Marcus RC, Li SC, Lai E (1999) Dorsal-ventral patterning defects in the eye of BF-1-deficient mice associated with a restricted loss of shh expression. Dev Biol 211:53–63

    Article  CAS  PubMed  Google Scholar 

  • Hussain RM, Abbey AM, Shah AR, Drenser KA, Trese MT, Capone A (2017) Chorioretinal coloboma complications: retinal detachment and choroidal neovascular membrane. J Ophthalmic Vis Res 12:3–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyer J, Mima T, Mikawa T (1998) FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125:869–877

    CAS  PubMed  Google Scholar 

  • James A, Lee C, Williams AM, Angileri K, Lathrop KL, Gross JM (2016) The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye. Dev Biol 419:262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J et al (2012) Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 33:1149–1160

    Article  CAS  PubMed  Google Scholar 

  • Jean D, Ewan K, Gruss P (1998) Molecular regulators involved in vertebrate eye development. Mech Dev 76:3–18

    Article  CAS  PubMed  Google Scholar 

  • Jena N, Martin-Seisdedos C, McCue P, Croce CM (1997) BMP7 null mutation in mice: developmental defects in skeleton, kidney and eye. Exp Cell Res 230:28–37

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Liu D, Gong Y, Wang Y, Sun S, Gui Y et al (2009) yap is required for the development of brain, eyes, and neural crest in zebrafish. Biochem Biophys Res Commun 384:114–119

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Ragge NK, Ragoussis J (2009) Molecular analysis of FOXC1 in subjects presenting with severe developmental eye anomalies. Mol Vis 15:1366–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F et al (2014) Mutation of SALL2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet 23:2511–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly OG, Pinson KI, Skarnes WC (2004) The wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131:2803–2815

    Article  CAS  PubMed  Google Scholar 

  • Khan KN, Carss K, Raymond FL, Islam F, Moore AT, Michaelides M et al (2017) Vitamin A deficiency due to bi-allelic mutation of RBP4: there’s more to it than meets the eye. Ophthalmic Genet 38:465–466

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Goodman J, Anderson KV, Niswander L (2007) Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev Cell 13:87–102

    Article  CAS  PubMed  Google Scholar 

  • Kleanthous L, Cruz D, D’Graham E, Efthimiou J (1987) Colobomata associated with Noonan’s syndrome. Postgrad Med J 63:559–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G et al (2008) Subfunctionalization od duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 4:e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B, Zuniga A et al (2018) TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol 8:e170134

    Article  CAS  Google Scholar 

  • Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL (1998) The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93:985–996

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Gross JM (2007) Laminin beta1 and gamma1 containing laminins are essential for basement membrane integrity in the zebrafish eye. Invest Ophthalmol Vis Sci 48:2483–2490

    Article  PubMed  Google Scholar 

  • Lee J, Lee BK, Gross JM (2013) Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata. Hum Mol Genet 22:3568–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre M, Abadie V, Attie-Bitach T, Philip N, Busa T, Bonneau D et al (2017) Phenotype and genotype analysis of a French cohort of 119 patients with CHARGE syndrome. Am J Med Genet 175:417–430

    Article  CAS  PubMed  Google Scholar 

  • Lieven O, Rüther U (2011) The Dkk1 dose is critical for eye development. Dev Biol 355:124–137

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Nathans J (2008) An essential role for frizzled 5 in mammalian ocular development. Development 135:3567–3576

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Widen SA, Williamson KA, Ratnapriya R, Gerth-Kahlert C, Rainger J, Alur RP et al (2016) A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Hum Mol Genet 25:1382–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupo G, Gestri G, O’Brien M, Denton RM, Chandraratna RA, Ley SV et al (2011) Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. Proc Natl Acad Sci USA 108:8698–8703

    Article  PubMed  PubMed Central  Google Scholar 

  • Macdonald R, Barth KA, Xu Q, Holder N, Mikkola I, Wilson SW (1995) Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121:3267–3278

    CAS  PubMed  Google Scholar 

  • Macdonald R, Scholes J, Strähle U, Brennan C, Holder N, Brand M et al (1997) The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development 124:2397–2408

    CAS  PubMed  Google Scholar 

  • Masai I, Lele Z, Yamaguchi M, Komori A, Nakata A et al (2003) N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130:2479–2494

    Article  CAS  PubMed  Google Scholar 

  • McMahon C, Gestri G, Wilson SW, Link BA (2009) Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev Biol 332:287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ, Bader JR et al (2015) Yap and Taz regulate retinal pigment epithelial cell fate. Development 142:3021–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MT, Stromland K (1999) Teratogen update—thalidomide: a review, with a focus on ocular findings and new potential uses. Teratology 60:306–321

    Article  CAS  PubMed  Google Scholar 

  • Moore KB, Mood K, Daar IO, Moody SA (2004) Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev Cell 6:55–67

    Article  CAS  PubMed  Google Scholar 

  • Moosajee M, Gregory-Evans CY (2006) Advances in the molecular genetics of ocular coloboma. Exp Rev Ophthalmol 1:209–227

    Article  CAS  Google Scholar 

  • Morcillo J, Martinez-Morales JR, Trousse F, Fermin Y, Sowden JC, Boloventa P (2006) Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133:3179–3190

    Article  CAS  PubMed  Google Scholar 

  • Morrison D, Fitzpatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B et al (2002) National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 39:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mui SH, Kim JW, Lemke G, Bertuzzi S (2005) Vax genes ventralise the embryonic eye. Genes Dev 19:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh H, Lee H, Park E, Park S (2016) Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 143:461–472

    Article  CAS  PubMed  Google Scholar 

  • Nornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P (1990) Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109:797–809

    CAS  PubMed  Google Scholar 

  • Oatts JT, Hull S, Michaelides M, Arno G, Webster AR, Moore AT (2017) Novel heterozygous mutation in YAP1 in a family with isolated ocular colobomas. Ophthalmic Genet 38:281–283

    Article  PubMed  Google Scholar 

  • Onwochei BC, Simon JW, Bateman JB, Couture KC, Mir E (2000) Ocular colobomata. Surv Ophthalmol 45:175–194

    Article  CAS  PubMed  Google Scholar 

  • Ozanics V, Jacobiec FA (1982) Prenatal development of the eye and its adnexa. In: Jacobiec FA (ed) Ocular anatomy, embryology and teratology. Harper and Row, Philadelphia, pp 11–96

    Google Scholar 

  • Ozeki H, Shirai S, Ikeda K, Ogura Y (1999) Anomalies associated with Axenfeld-Rieger syndrome. Graefes Arch Clin Exp Ophthalmol 237:730–734

    Article  CAS  PubMed  Google Scholar 

  • Ozeki H, Ogura Y, Hirabayashi Y, Shimada S (2000) Apoptosis is associated with formation and persistence of the embryonic fissure. Curr Eye Res 20:367–372

    Article  CAS  PubMed  Google Scholar 

  • Pillai-Kastoori L, Wen W, Wilson SG, Strachan E, Lo-Castro A, Fichera M et al (2014) Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis. PLoS Genet 10:e1004491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H et al (2015) YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porges Y, Gershoni-Baruch R, Leibu R, Goldscher D, Zonis S, Shapira I et al (1992) Hereditary microphthalmia with colobomatous cyst. Am J Ophthalmol 114:30–34

    Article  CAS  PubMed  Google Scholar 

  • Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA et al (2014) Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 94:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainger J, Williamson KA, Soares DC, Truch J, Kurian D, Gillessen-Kaesbach G et al (2017) A recurrent de novo mutation in ACTG1 causes isolated coloboma. Hum Mutat 38:942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O’Roak BJ, Gilissen C et al (2012) De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser–Winter syndrome. Nature 44:440–444

    CAS  Google Scholar 

  • Romero P, Anhueza F, Lopez P, Reyes L, Herrera L (2011) c.194 A > C (Q65P) mutation in the LMX1B gene in patients with nail-patella syndrome associated with glaucoma. Mol Vis 17:1929–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph G, Haritoglou C, Kalpadakis P, Boergen KP, Meitinger T (2001) LEOPARD syndrome with iris-retina-choroid coloboma. Discordant findings in monozygotic twins (MIM # 151 100). Ophthalmologe 98:1101–1103

    Article  CAS  PubMed  Google Scholar 

  • Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K (2002) Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4: Shh, and RA. Genesis 33:86–96

    Article  CAS  PubMed  Google Scholar 

  • Sattore J, López JM, Martinez J, Piñera P (1990) Dominant macular colobomata. J Pediatr Ophthalmol Strabismus 27:148–152

    Google Scholar 

  • Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, Haffter R (1998) Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125:2983–2993

    CAS  PubMed  Google Scholar 

  • Schimmenti LA (2011) Renal coloboma syndrome. Eur J Hum Genet 19:1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS, Roessler E et al (2003) Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am J Med Genet 116A:215–221

    Article  PubMed  Google Scholar 

  • Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B, Wagner M, Gruss P (2000) Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127:4325–43334

    CAS  PubMed  Google Scholar 

  • Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y (2017) Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 429:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • See AW, Clagett-Dame M (2009) The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev Biol 325:94–105

    Article  CAS  PubMed  Google Scholar 

  • Sghari S, Gunhaga L (2018) Temporal requirement of Mab21l2 during eye development in chick reveals stage-dependent functions for retinogenesis. Invest Ophthalmol Vis Sci 59:3869–3878

    Article  CAS  PubMed  Google Scholar 

  • Shah SP, Taylor AE, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS et al (2011) Anophthalmos, microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Invest Ophthalmol Vis Sci 52:558–564

    Article  PubMed  Google Scholar 

  • Shi Y, Tu Y, Mecham RP, Bassnett S (2013) Ocular phenotype of Fbn2-null mice. Invest Ophthalmol Vis Sci 54:7163–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhaye J, Norden C (2017) Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. Elife. https://doi.org/10.7554/elife.22689

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SR, Yangzes S, Gupta R, Ram J (2018) Surgical technique for management of isolated lenticular coloboma with high corneal astigmatism. Indian J Ophthalmol 66:562–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Skarie JM, Link BA (2009) FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest Ophthalmol Vis Sci 50:5026–5034

    Article  PubMed  Google Scholar 

  • Smith R, Huang Y-T, Tian T, Voljtasova D, Mesalles-Naranjo O, Pollard SM et al (2017) The transcription factor Foxg1 promotes optic fissure closure in the mouse by suppressing Wnt8b in the nasal optic stalk. J Neurosci 37:7975–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromland K, Pinazo-Duran MD (2002) Ophthalmic involvement in the fetal alcohol syndrome: clinical and animal model studies. Alcohol Alcohol 37:2–8

    Article  CAS  PubMed  Google Scholar 

  • Takabatake Y, Takabatake T, Sasagawa S, Takeshima K (2002) Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development. Dev Growth Differ 44:257–271

    Article  CAS  PubMed  Google Scholar 

  • Take-uchi M, Clarke JD, Wilson SW (2003) Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130:955–968

    Article  CAS  PubMed  Google Scholar 

  • Tawfik HA, Abdulhafez MH, Fouad YA (2015) Congenital upper eyelid coloboma: embryologic, nomenclatorial, nosologic, etiologic, pathogenetic, epidemiologic, clinical, and management perspectives. Ophthalmic Plast Reconstr Surg 31:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres M, Gomez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–3391

    CAS  PubMed  Google Scholar 

  • Van Nostrand JL, Brady CA, Jung H, Fuentes DR, Kozak MM, Johnson TM et al (2014) Inappropriate p53 activation during development induce features of CHARGE syndrome. Nature 514:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viringipurampeer IA, Ferreira T, DeMaria S, Yoon JJ, Shan X, Moosajee M et al (2012) Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development. Hum Mol Genet 21:2357–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449

    CAS  PubMed  Google Scholar 

  • Wang L, He F, Bu J, Zhen Y, Liu X, Du W et al (2012) ABCB6 mutations cause ocular coloboma. Am J Hum Genet 90:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss O, Kaufman R, Michaeli N, Inbal A (2012) Abnormal vasculature interferes with optic fissure closure in lmo2 mutant zebrafish. Dev Biol 369:191–198

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Pillai-Kastoori L, Wilson SG, Morris AC (2015) Sox4 regulates choroid fissure closure by limiting Hedgehog signaling during ocular morphogenesis. Dev Biol 399:139–153

    Article  CAS  PubMed  Google Scholar 

  • Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV et al (2014) Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet 94:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurm A, Sock E, Fuchshofer R, Wegner M, Tamm ER (2008) Anterior segment dysgenesis in the eyes of mice deficient for the high-mobility-group transcription factor Sox11. Exp Eye Res 86:895–907

    Article  CAS  PubMed  Google Scholar 

  • Wyatt AW, Osborne RJ, Stewart H, Ragge NK (2010) Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mut 31:781–787

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C et al (1999) Embryonic lethality and vascular defects in mice lacking the notch ligand Jagged1. Hum Mol Genet 8:723–730

    Article  CAS  PubMed  Google Scholar 

  • Yahyavi M, Abouzeid H, Gawdat G, de Preux A-S, Xiao T, Bardakjian T et al (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Tamai M (1990) Congenital macular coloboma in Down syndrome. Ann Ophthalmol 22:222–223

    CAS  PubMed  Google Scholar 

  • Zhang W, Mulieri PJ, Gaio U, Bae GU, Krauss RS, Kang JS (2009) Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo. FEBS J 276:5998–6010

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Huang H, Cao P, Wang Z, Chen Y, Pan Y (2013) Sma- and mad-related protein 7 (Smad7) is required for embryonic eye development in the mouse. J Biol Chem 288:10275–10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Saitsu H, Sun X, Shiota K, Ishibashi M (2010) Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain. Mech Dev 127:62–72

    Article  CAS  PubMed  Google Scholar 

  • Zhou CJ, Molotkov A, Song L, Li Y, Pleasure DE, Pleasure SJ et al (2008) Ocular coloboma and dorsoventral neuroretinal patterning defects in Lrp6 mutant eyes. Dev Dyn 237:3681–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Levine EM (2012) Vsx2 controls eye morphogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. PLoS Genet 8:e1002924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Gregory-Evans.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ALSomiry, A.S., Gregory-Evans, C.Y. & Gregory-Evans, K. An update on the genetics of ocular coloboma. Hum Genet 138, 865–880 (2019). https://doi.org/10.1007/s00439-019-02019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-02019-3

Navigation