Skip to main content

Advertisement

Log in

Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Over 800 mutations in the ABCA4 gene cause autosomal recessive Stargardt disease. Due to extensive genetic heterogeneity, observed variant-associated phenotypes can manifest tremendous variability of expression. Furthermore, the high carrier frequency of pathogenic ABCA4 alleles in the general population (~1:20) often results in pseudo-dominant inheritance patterns further complicating the diagnosis and characterization of affected individuals. This study describes a genotype/phenotype analysis of an unusual family with multiple macular disease phenotypes spanning across two generations and segregating four distinct ABCA4 mutant alleles. Complete sequencing of ABCA4 discovered two known missense mutations, p.C54Y and p.G1961E. Array comparative genomic hybridization revealed a large novel deletion combined with a small insertion, c.6148-698_c.6670del/insTGTGCACCTCCCTAG, and complete sequencing of the entire ABCA4 genomic locus uncovered a new deep intronic variant, c.302+68C>T. Patients with the p.G1961E mutation had the mildest, confined maculopathy phenotype with peripheral flecks while those with all other mutant allele combinations exhibited a more advanced stage of generalized retinal and choriocapillaris atrophy. This family epitomizes the clinical and genetic complexity of ABCA4-associated diseases. It contained variants from all classes of mutations, in the coding region, deep intronic, both single nucleotide variants and copy number variants that accounted for varying phenotypes segregating in an apparent dominant fashion. Unequivocally defining disease-associated alleles in the ABCA4 locus requires a multifaceted approach that includes advanced mutation detection methods and a thorough analysis of clinical phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert S, Sangermano R, Bax N, Roosing S, van den Born L, den Engelsman-van Dijk A, Ramlal A, Stone E, Hoyng C, Cremers F (2015) Towards the identification of deep-intronic ABCA4 mutations in Stargardt patients by using induced pluripotent stem cell-derived photoreceptor progenitor cells. Association for Research in Vision and Ophthalmology

  • Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67:487–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  • Bertelsen M, Zernant J, Larsen M, Duno M, Allikmets R, Rosenberg T (2014) Generalized choriocapillaris dystrophy, a distinct phenotype in the spectrum of ABCA4-associated retinopathies. Investig Ophthalmol Vis Sci 55:2766–2776. doi:10.1167/iovs.13-13391

    Article  CAS  Google Scholar 

  • Boon CJ, van Schooneveld MJ, den Hollander AI, van Lith-Verhoeven JJ, Zonneveld-Vrieling MN, Theelen T, Cremers FP, Hoyng CB, Klevering BJ (2007) Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. Br J Ophthalmol 91:1504–1511. doi:10.1136/bjo.2007.115659

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun TA, Mullins RF, Wagner AH, Andorf JL, Johnston RM, Bakall BB, Deluca AP, Fishman GA, Lam BL, Weleber RG, Cideciyan AV, Jacobson SG, Sheffield VC, Tucker BA, Stone EM (2013) Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet 22:5136–5145. doi:10.1093/hmg/ddt367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burke TR, Fishman GA, Zernant J, Schubert C, Tsang SH, Smith RT, Ayyagari R, Koenekoop RK, Umfress A, Ciccarelli ML, Baldi A, Iannaccone A, Cremers FP, Klaver CC, Allikmets R (2012) Retinal phenotypes in patients homozygous for the G1961E mutation in the ABCA4 gene. Investig Ophthalmol Vis Sci 53:4458–4467. doi:10.1167/iovs.11-9166

    Article  CAS  Google Scholar 

  • Cella W, Greenstein VC, Zernant-Rajang J, Smith TR, Barile G, Allikmets R, Tsang SH (2009) G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res 89:16–24. doi:10.1016/j.exer.2009.02.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, Milam AH, Bennett J, Stone EM, Jacobson SG (2005) ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Investig Ophthalmol Vis Sci 46:4739–4746

    Article  Google Scholar 

  • Cremers FP, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362

    Article  PubMed  CAS  Google Scholar 

  • Francis PJ, Schultz DW, Gregory AM, Schain MB, Barra R, Majewski J, Ott J, Acott T, Weleber RG, Klein ML (2005) Genetic and phenotypic heterogeneity in pattern dystrophy. Br J Ophthalmol 89:1115–1119. doi:10.1136/bjo.2004.062695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujinami K, Singh R, Carroll J, Zernant J, Allikmets R, Michaelides M, Moore AT (2014) Fine central macular dots associated with childhood-onset Stargardt Disease. Acta Ophthalmol 92:e157–e159. doi:10.1111/aos.12259

    Article  PubMed  Google Scholar 

  • Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Robson AG, Holder GE, Allikmets R, Michaelides M, Moore AT (2015) Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology 122:326–334. doi:10.1016/j.ophtha.2014.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. doi:10.1038/nature11632

  • Gonzaga-Jauregui C, Zhang F, Towne CF, Batish SD, Lupski JR (2010) GJB1/Connexin 32 whole gene deletions in patients with X-linked Charcot–Marie–Tooth disease. Neurogenetics 11:465–470. doi:10.1007/s10048-010-0247-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardison RC, Taylor J (2012) Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet 13:469–483. doi:10.1038/nrg3242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327. doi:10.1371/journal.pgen.1000327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315. doi:10.1038/ng.2892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–1247. doi:10.1016/j.cell.2007.11.037

    Article  PubMed  CAS  Google Scholar 

  • Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M (1999) Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 64:422–434. doi:10.1086/302251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YH, Li CG, Zhou SF (2009) Prediction of deleterious functional effects of non-synonymous single nucleotide polymorphisms in human nuclear receptor genes using a bioinformatics approach. Drug Metab Lett 3:242–286

    Article  PubMed  CAS  Google Scholar 

  • Marmor MF, McNamara JA (1996) Pattern dystrophy of the retinal pigment epithelium and geographic atrophy of the macula. Am J Ophthalmol 122:382–392

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12. doi:10.1038/ng0198-11

    Article  PubMed  CAS  Google Scholar 

  • Maugeri A, van Driel MA, van de Pol DJ, Klevering BJ, van Haren FJ, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ, Dahl N, Brunner HG, Deutman AF, Hoyng CB, Cremers FP (1999) The 2588G−>C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet 64:1024–1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maugeri A, Klevering BJ, Rohrschneider K, Blankenagel A, Brunner HG, Deutman AF, Hoyng CB, Cremers FP (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 67:960–966. doi:10.1086/303079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. doi:10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  • Mullins RF, Kuehn MH, Radu RA, Enriquez GS, East JS, Schindler EI, Travis GH, Stone EM (2012) Autosomal recessive retinitis pigmentosa due to ABCA4 mutations: clinical, pathologic, and molecular characterization. Investig Ophthalmol Vis Sci 53:1883–1894. doi:10.1167/iovs.12-9477

    Article  CAS  Google Scholar 

  • Noupuu K, Lee W, Zernant J, Tsang SH, Allikmets R (2014) Structural and genetic assessment of the ABCA4-associated optical gap phenotype. Investig Ophthalmol Vis Sci 55:7217–7226. doi:10.1167/iovs.14-14674

    Article  Google Scholar 

  • Riveiro-Alvarez R, Xie YA, Lopez-Martinez MA, Gambin T, Perez-Carro R, Avila-Fernandez A, Lopez-Molina MI, Zernant J, Jhangiani S, Muzny D, Yuan B, Boerwinkle E, Gibbs R, Lupski JR, Ayuso C, Allikmets R (2015) New mutations in the RAB28 gene in 2 Spanish families with cone-rod dystrophy. JAMA Ophthalmol 133:133–139. doi:10.1001/jamaophthalmol.2014.4266

    Article  PubMed  Google Scholar 

  • Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH (2000) A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 67:800–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert C, Pryds A, Zeng S, Xie Y, Freund KB, Spaide RF, Merriam JC, Barbazetto I, Slakter JS, Chang S, Munch IC, Drack AV, Hernandez J, Yzer S, Merriam JE, Linneberg A, Larsen M, Yannuzzi LA, Mullins RF, Allikmets R (2014) Cadherin 5 is regulated by corticosteroids and associated with central serous chorioretinopathy. Hum Mutat 35:859–867. doi:10.1002/humu.22551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shroyer NF, Lewis RA, Yatsenko AN, Lupski JR (2001) Null missense ABCR (ABCA4) mutations in a family with Stargardt disease and retinitis pigmentosa. Investig Ophthalmol Vis Sci 42:2757–2761

    CAS  Google Scholar 

  • Stenirri S, Battistella S, Fermo I, Manitto MP, Martina E, Brancato R, Ferrari M, Cremonesi L (2006) De novo deletion removes a conserved motif in the C-terminus of ABCA4 and results in cone-rod dystrophy. Clin Chem Lab Med 44:533–537. doi:10.1515/CCLM.2006.116

    Article  PubMed  CAS  Google Scholar 

  • Tsang SH, Burke T, Oll M, Yzer S, Lee W, Xie YA, Allikmets R (2014) Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. Ophthalmology 121:1773–1782. doi:10.1016/j.ophtha.2014.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Watzke RC, Folk JC, Lang RM (1982) Pattern dystrophy of the retinal pigment epithelium. Ophthalmology 89:1400–1406

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers LE, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159:200–214. doi:10.1016/j.cell.2014.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR (2001) Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet 108:346–355

    Article  PubMed  CAS  Google Scholar 

  • Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR (2003) An ABCA4 genomic deletion in patients with Stargardt disease. Hum Mutat 21:636–644. doi:10.1002/humu.10219

    Article  PubMed  CAS  Google Scholar 

  • Zahid S, Jayasundera T, Rhoades W, Branham K, Khan N, Niziol LM, Musch DC, Heckenlively JR (2013) Clinical phenotypes and prognostic full-field electroretinographic findings in Stargardt disease. Am J Ophthalmol 155(465–473):e3. doi:10.1016/j.ajo.2012.09.011

    PubMed  Google Scholar 

  • Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R (2011) Analysis of the ABCA4 gene by next-generation sequencing. Investig Ophthalmol Vis Sci 52:8479–8487. doi:10.1167/iovs.11-8182

    Article  CAS  Google Scholar 

  • Zernant J, Xie YA, Ayuso C, Riveiro-Alvarez R, Lopez-Martinez MA, Simonelli F, Testa F, Gorin MB, Strom SP, Bertelsen M, Rosenberg T, Boone PM, Yuan B, Ayyagari R, Nagy PL, Tsang SH, Gouras P, Collison FT, Lupski JR, Fishman GA, Allikmets R (2014) Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet 23:6797–6806. doi:10.1093/hmg/ddu396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR (2009) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41:849–853. doi:10.1038/ng.399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the National Eye Institute/NIH EY021163, EY019861, EY021237 and EY019007 (Core Support for Vision Research); National Human Genome Research Institute/NIH HG0065342; Robert L. Burch III Fund, Columbia University, New York, NY, New York Community Trust—Fredrick J. and Theresa Dow Wallace Fund, Columbia University, New York, NY; Foundation Fighting Blindness (Owings Mills, Maryland), and unrestricted funds from Research to Prevent Blindness (New York, NY) to the Department of Ophthalmology, Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rando Allikmets.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Xie, Y., Zernant, J. et al. Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes. Hum Genet 135, 9–19 (2016). https://doi.org/10.1007/s00439-015-1605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1605-y

Keywords

Navigation