Skip to main content
Log in

Natural and orthogonal model for estimating gene–gene interactions applied to cutaneous melanoma

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Epistasis, or gene–gene interaction, results from joint effects of genes on a trait; thus, the same alleles of one gene may display different genetic effects in different genetic backgrounds. In this study, we generalized the coding technique of a natural and orthogonal interaction (NOIA) model for association studies along with gene–gene interactions for dichotomous traits and human complex diseases. The NOIA model which has non-correlated estimators for genetic effects is important for estimating influence from multiple loci. We conducted simulations and data analyses to evaluate the performance of the NOIA model. Both simulation and real data analyses revealed that the NOIA statistical model had higher power for detecting main genetic effects and usually had higher power for some interaction effects than the usual model. Although associated genes have been identified for predisposing people to melanoma risk: HERC2 at 15q13.1, MC1R at 16q24.3 and CDKN2A at 9p21.3, no gene–gene interaction study has been fully explored for melanoma. By applying the NOIA statistical model to a genome-wide melanoma dataset, we confirmed the previously identified significantly associated genes and found potential regions at chromosomes 5 and 4 that may interact with the HERC2 and MC1R genes, respectively. Our study not only generalized the orthogonal NOIA model but also provided useful insights for understanding the influence of interactions on melanoma risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Castro JM, Carlborg O (2007) A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis. Genetics 176(2):1151–1167. doi:10.1534/genetics.106.067348

    Article  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Castro JM, Le Rouzic A, Carlborg O (2008) How to perform meaningful estimates of genetic effects. PLoS Genet 4(5):e1000062. doi:10.1371/journal.pgen.1000062

    Article  PubMed Central  PubMed  Google Scholar 

  • Amos CI, Wang LE, Lee JE, Gershenwald JE, Chen WV, Fang S, Kosoy R, Zhang M, Qureshi AA, Vattathil S, Schacherer CW, Gardner JM, Wang Y, Bishop DT, Barrett JH, MacGregor S, Hayward NK, Martin NG, Duffy DL, Mann GJ, Cust A, Hopper J, Brown KM, Grimm EA, Xu Y, Han Y, Jing K, McHugh C, Laurie CC, Doheny KF, Pugh EW, Seldin MF, Han J, Wei Q (2011) Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 20(24):5012–5023. doi:10.1093/hmg/ddr415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E, Bakker B, Bianchi-Scarra G, Bressac-de Paillerets B, Calista D, Cannon-Albright LA, Chin AWT, Debniak T, Galore-Haskel G, Ghiorzo P, Gut I, Hansson J, Hocevar M, Hoiom V, Hopper JL, Ingvar C, Kanetsky PA, Kefford RF, Landi MT, Lang J, Lubinski J, Mackie R, Malvehy J, Mann GJ, Martin NG, Montgomery GW, van Nieuwpoort FA, Novakovic S, Olsson H, Puig S, Weiss M, van Workum W, Zelenika D, Brown KM, Goldstein AM, Gillanders EM, Boland A, Galan P, Elder DE, Gruis NA, Hayward NK, Lathrop GM, Barrett JH, Bishop JA (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925. doi:10.1038/ng.411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA (2012) Epistasis as the primary factor in molecular evolution. Nature. doi:10.1038/nature11510

    PubMed  Google Scholar 

  • Capasso M, Diskin SJ, Totaro F, Longo L, De Mariano M, Russo R, Cimmino F, Hakonarson H, Tonini GP, Devoto M, Maris JM, Iolascon A (2013) Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis 34(3):605–611. doi:10.1093/carcin/bgs380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung Y, Lee SY, Elston RC, Park T (2007) Odds ratio based multifactor-dimensionality reduction method for detecting gene–gene interactions. Bioinformatics 23(1):71–76. doi:10.1093/bioinformatics/btl557

    Article  CAS  PubMed  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10(6):392–404. doi:10.1038/nrg2579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic D, Barnes C, Conrad DF, Giannoulatou E, Holmes C, Marchini JL, Stirrups K, Tobin MD, Wain LV, Yau C, Aerts J, Ahmad T, Andrews TD, Arbury H, Attwood A, Auton A, Ball SG, Balmforth AJ, Barrett JC, Barroso I, Barton A, Bennett AJ, Bhaskar S, Blaszczyk K, Bowes J, Brand OJ, Braund PS, Bredin F, Breen G, Brown MJ, Bruce IN, Bull J, Burren OS, Burton J, Byrnes J, Caesar S, Clee CM, Coffey AJ, Connell JM, Cooper JD, Dominiczak AF, Downes K, Drummond HE, Dudakia D, Dunham A, Ebbs B, Eccles D, Edkins S, Edwards C, Elliot A, Emery P, Evans DM, Evans G, Eyre S, Farmer A, Ferrier IN, Feuk L, Fitzgerald T, Flynn E, Forbes A, Forty L, Franklyn JA, Freathy RM, Gibbs P, Gilbert P, Gokumen O, Gordon-Smith K, Gray E, Green E, Groves CJ, Grozeva D, Gwilliam R, Hall A, Hammond N, Hardy M, Harrison P, Hassanali N, Hebaishi H, Hines S, Hinks A, Hitman GA, Hocking L, Howard E, Howard P, Howson JM, Hughes D, Hunt S, Isaacs JD, Jain M, Jewell DP, Johnson T, Jolley JD, Jones IR, Jones LA, Kirov G, Langford CF, Lango-Allen H, Lathrop GM, Lee J, Lee KL, Lees C, Lewis K, Lindgren CM, Maisuria-Armer M, Maller J, Mansfield J, Martin P, Massey DC, McArdle WL, McGuffin P, McLay KE, Mentzer A, Mimmack ML, Morgan AE, Morris AP, Mowat C, Myers S, Newman W, Nimmo ER, O’Donovan MC, Onipinla A, Onyiah I, Ovington NR, Owen MJ, Palin K, Parnell K, Pernet D, Perry JR, Phillips A, Pinto D, Prescott NJ, Prokopenko I, Quail MA, Rafelt S, Rayner NW, Redon R, Reid DM, Renwick, Ring SM, Robertson N, Russell E, St Clair D, Sambrook JG, Sanderson JD, Schuilenburg H, Scott CE, Scott R, Seal S, Shaw-Hawkins S, Shields BM, Simmonds MJ, Smyth DJ, Somaskantharajah E, Spanova K, Steer S, Stephens J, Stevens HE, Stone MA, Su Z, Symmons DP, Thompson JR, Thomson W, Travers ME, Turnbull C, Valsesia A, Walker M, Walker NM, Wallace C, Warren-Perry M, Watkins NA, Webster J, Weedon MN, Wilson AG, Woodburn M, Wordsworth BP, Young AH, Zeggini E, Carter NP, Frayling TM, Lee C, McVean G, Munroe PB, Palotie A, Sawcer SJ, Scherer SW, Strachan DP, Tyler-Smith C, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall M, Gough SC, Hall AS, Hattersley AT, Hill AV, Mathew CG, Pembrey M, Satsangi J, Stratton MR, Worthington J, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand W, Parkes M, Rahman N, Todd JA, Samani NJ, Donnelly P (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720. doi:10.1038/nature08979

    Article  CAS  PubMed  Google Scholar 

  • Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 70(2):461–471. doi:10.1086/338759

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O’Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O’Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O’Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT Jr, Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurtz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Jarvelin MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367):103–109. doi:10.1038/nature10405

    Article  CAS  PubMed  Google Scholar 

  • Gayan J, Gonzalez-Perez A, Bermudo F, Saez ME, Royo JL, Quintas A, Galan JJ, Moron FJ, Ramirez-Lorca R, Real LM, Ruiz A (2008) A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis. BMC genomics 9:360. doi:10.1186/1471-2164-9-360

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghilardi N, Li J, Hongo JA, Yi S, Gurney A, de Sauvage FJ (2002) A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem 277(19):16831–16836. doi:10.1074/jbc.M201140200

    Article  CAS  PubMed  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene-environment interactions. Bioinformatics 19(3):376–382

    Article  CAS  PubMed  Google Scholar 

  • Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ (2007) Exploiting gene–environment interaction to detect genetic associations. Hum Hered 63(2):111–119. doi:10.1159/000099183

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Xiao F, Xiong M, Andrew AS, Brenner H, Duell EJ, Haugen A, Hoggart C, Hung RJ, Lazarus P, Liu C, Matsuo K, Mayordomo JI, Schwartz AG, Staratschek-Jox A, Wichmann E, Yang P, Amos CI (2012) Natural and orthogonal interaction framework for modeling gene-environment interactions with application to lung cancer. Hum Hered 73(4):185–194. doi:10.1159/000339906

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56(1–3):73–82. doi:73735

    Article  PubMed  Google Scholar 

  • Nagel RL (2001) Pleiotropic and epistatic effects in sickle cell anemia. Curr Opin Hematol 8(2):105–110

    Article  CAS  PubMed  Google Scholar 

  • Nagel RL (2005) Epistasis and the genetics of human diseases. CR Biol 328(7):606–615. doi:10.1016/j.crvi.2005.05.003

    Article  CAS  Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368(6473):753–756. doi:10.1038/368753a0

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse I, Perlman MD, Martin PJ, Hansen JA, Kooperberg C (2012) Multivariate detection of gene–gene interactions. Genet Epidemiol 36(6):622–630. doi:10.1002/gepi.21656

    Article  PubMed Central  PubMed  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69(1):138–147. doi:10.1086/321276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. doi:10.3322/caac.20138

    Article  PubMed  Google Scholar 

  • Sturm RA, Duffy DL, Zhao ZZ, Leite FP, Stark MS, Hayward NK, Martin NG, Montgomery GW (2008) A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue–brown eye color. Am J Hum Genet 82(2):424–431. doi:10.1016/j.ajhg.2007.11.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Visser M, Kayser M, Palstra RJ (2012) HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 22(3):446–455. doi:10.1101/gr.128652.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2(9):802–809

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB (1902) Mendel’s principles of heredity and the maturation of the germ-cells. Science 16(416):991–993. doi:10.1126/science.16.416.991-b

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Ma J, Amos CI (2013) A unified framework integrating parent-of-origin effects for association study. PLoS One 8(8):e72208. doi:10.1371/journal.pone.0072208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this manuscript was supported by Cancer Prevention and Research Institute of Texas RP100443, National Institutes of Health Grants U19CA148127 and R01CA134682. We also acknowledge the support for Feifei Xiao by National Institutes of Health Grant, R01DA016750, from Dr. Heping Zhang, Yale University School of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher I. Amos.

Additional information

F. Xiao and J. Ma contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

439_2013_1392_MOESM2_ESM.tif

Figure S1. Density distribution of the estimates of the parameters from a simulated data analysis in Fig. 1, with a quantitative trait influenced by two loci and positive interaction coefficients. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 10 kb)

439_2013_1392_MOESM3_ESM.tif

Figure S2. Density distribution of the estimates of the parameters from a simulated data analysis in Fig. 2, with a quantitative trait influenced by two loci and negative interaction coefficients. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 10 kb)

439_2013_1392_MOESM4_ESM.tif

Figure S3. Density distribution of the estimates of the parameters from a simulated data analysis in Fig. 3, with a quantitative trait influenced by two loci and no interactions. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 10 kb)

439_2013_1392_MOESM5_ESM.tif

Figure S4. Power under different critical values of the \(P\) values obtained using the Wald test for the case–control simulation dataset under scenario 2 when negative interaction effects present. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The upper panel is for the additive effects and dominant effects of locus \(A\) and locus \(B\), respectively. The bottom panel is for the interaction effect between locus \(A\) and locus \(B\). The simulating values of the genetic effects were \({\vec{{E}}}_{\text{F}}^{\text{T}} =[{ - 2.00, 0.50, 0.30, 0.40, 0.37, - 0.15, - 0.08, - 0.10, - 0.04} ]\) Corresponding values of the statistical genetic effects were \({\vec{{E}}}_{\text{S}}^{\text{T}} =[{ - 1.29, 0.46, 0.24, 0.39, 0.29, - 0.23, - 0.10, - 0.12, - 0.04 } ]\) (TIFF 12 kb)

439_2013_1392_MOESM6_ESM.tif

Figure S5. Power under different critical values of the \(P\) values obtained using the Wald test for the case–control simulation dataset under scenario 3 when no interaction effects present. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms. The upper panel is for the additive effects and dominant effects of locus \(A\) and locus \(B\), respectively. The bottom panel is for the interaction effect between locus \(A\) and locus \(B\). The simulating values of the genetic effects were \({\vec{{E}}}_{\text{F}}^{\text{T}} =[{ - 2.0, 0.5, 0.3, 0.4, 0.37, 0.0, 0.0, 0.0, 0.0} ]\). Corresponding values of the statistical genetic effects were \({\vec{{E}}}_{\text{S}}^{\text{T}} =[{ - 1.18, 0.62, 0.30, 0.55, 0.37, 0.0, 0.0, 0.0, 0.0} ]\) (TIFF 12 kb)

439_2013_1392_MOESM7_ESM.tif

Figure S6. Density distribution of the estimates of the parameters from a simulated data analysis in Fig. 4, with a case–control trait influenced by two loci and positive interaction coefficients. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 9 kb)

439_2013_1392_MOESM8_ESM.tif

Figure S7. Density distribution of the estimates of the parameters from a simulated data analysis in Figure S4, with a case–control trait influenced by two loci and negative interaction coefficients. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 10 kb)

439_2013_1392_MOESM9_ESM.tif

Figure S8. Density distribution of the estimates of the parameters from a simulated data analysis in Figure S5, with a case–control trait influenced by two loci and no interactions. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The arrows show the true simulated genetic effect terms (TIFF 9 kb)

439_2013_1392_MOESM10_ESM.tif

Figure S9 Power under different critical values of the \(P\) values obtained using the Wald test for the quantitative simulation data influence by two loci and positive interaction coefficients. The minor allele frequency was 0.49. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The upper panel is for the additive effects and dominant effects of locus \(A\) and locus \(B\), respectively. The bottom panel is for the interaction effect between locus \(A\) and locus \(B\). The simulating values of the genetic effects were \({\vec{{E}}}_{\text{F}}^{\text{T}} =[{100.00, 1.50, 0.40, 1.10, 0.50, 0.80, 0.23, 0.32, 0.12} ]\). Corresponding values of the statistical genetic effects were \({\vec{{E}}}_{\text{S}}^{\text{T}} =[{104.16, 2.46, 0.69, 2.02, 0.88, 0.8, 0.23, 0.32, 0.12} ]\) (TIFF 12 kb)

439_2013_1392_MOESM11_ESM.tif

Figure S10. Power under different critical values of the \(P\) values obtained using the Wald test for the quantitative simulation data influence by two loci with no interaction effects. The minor allele frequency was 0.49. For each graph, Greek symbols and solid lines correspond to the NOIA method, and the broken line corresponds to the functional method. The upper panel is for the additive effects and dominant effects of locus \(A\) and locus \(B\), respectively. The bottom panel is for the interaction effect between locus \(A\) and locus \(B\). The simulating values of the genetic effects were \({\vec{{E}}}_{\text{F}}^{\text{T}} =[{100.00, 1.50, 0.40, 1.10, 0.50, 0.0, 0.0, 0.0, 0.0} ]\). Corresponding values of the statistical genetic effects were \({\vec{{E}}}_{\text{S}}^{\text{T}} =[{103.05, 1.50, 0.40, 1.10, 0.50, 0.0, 0.0, 0.0, 0.0} ]\) (TIFF 12 kb)

439_2013_1392_MOESM12_ESM.tif

Figure S11. Q–Q plot for P values of genotyped SNPs obtained from NOIA statistical model without dominance component testing on additive effect estimation. \(\lambda = 1.011\) (TIFF 108 kb)

439_2013_1392_MOESM13_ESM.tif

Figure S12. Q–Q plot for P values of genotyped SNPs obtained from NOIA statistical model with dominance component detection on additive effect estimation. \(\lambda = 1.014\). SNPs with genotype frequency of minor homozygote less than 0.005 were filtered (TIFF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, F., Ma, J., Cai, G. et al. Natural and orthogonal model for estimating gene–gene interactions applied to cutaneous melanoma. Hum Genet 133, 559–574 (2014). https://doi.org/10.1007/s00439-013-1392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1392-2

Keywords

Navigation