Skip to main content
Log in

Genomewide linkage analysis in Costa Rican families implicates chromosome 15q14 as a candidate region for OCD

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Obsessive compulsive disorder (OCD) has a complex etiology that encompasses both genetic and environmental factors. However, to date, despite the identification of several promising candidate genes and linkage regions, the genetic causes of OCD are largely unknown. The objective of this study was to conduct linkage studies of childhood-onset OCD, which is thought to have the strongest genetic etiology, in several OCD-affected families from the genetically isolated population of the Central Valley of Costa Rica (CVCR). The authors used parametric and non-parametric approaches to conduct genome-wide linkage analyses using 5,786 single nucleotide repeat polymorphisms (SNPs) in three CVCR families with multiple childhood-onset OCD-affected individuals. We identified areas of suggestive linkage (LOD score ≥2) on chromosomes 1p21, 15q14, 16q24, and 17p12. The strongest evidence for linkage was on chromosome 15q14 (LOD = 3.13), identified using parametric linkage analysis with a recessive model, and overlapping a region identified in a prior linkage study using a Caucasian population. Each CVCR family had a haplotype that co-segregated with OCD across a ~7 Mbp interval within this region, which contains 18 identified brain expressed genes, several of which are potentially relevant to OCD. Exonic sequencing of the strongest candidate gene in this region, the ryanodine receptor 3 (RYR3), identified several genetic variants of potential interest, although none co-segregated with OCD in all three families. These findings provide evidence that chromosome 15q14 is linked to OCD in families from the CVCR, and supports previous findings to suggest that this region may contain one or more OCD susceptibility loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30(1):97–101. doi:10.1038/ng786

    Article  PubMed  CAS  Google Scholar 

  • Adasme T, Haeger P, Paula-Lima AC, Espinoza I, Casas-Alarcon MM, Carrasco MA, Hidalgo C (2011) Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation. Proc Natl Acad Sci USA 108(7):3029–3034. doi:10.1073/pnas.1013580108

    Article  PubMed  CAS  Google Scholar 

  • Allen Brain Atlas Resources (2009) Allen Institute for Brain Science. http://www.brain-map.org/. Accessed 25 February 2011

  • Arnold PD, Sicard T, Burroughs E, Richter MA, Kennedy JL (2006) Glutamate transporter gene SLC1A1 associated with obsessive–compulsive disorder. Arch Gen Psychiatry 63(7):769–776

    Article  PubMed  CAS  Google Scholar 

  • Bacanu SA (2005) Robust estimation of critical values for genome scans to detect linkage. Genet Epidemiol 28(1):24–32. doi:10.1002/gepi.20030

    Article  PubMed  Google Scholar 

  • Balschun D, Wolfer DP, Bertocchini F, Barone V, Conti A, Zuschratter W, Missiaen L, Lipp HP, Frey JU, Sorrentino V (1999) Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J 18(19):5264–5273. doi:10.1093/emboj/18.19.5264

    Article  PubMed  CAS  Google Scholar 

  • Cavallini MC, Pasquale L, Bellodi L, Smeraldi E (1999) Complex segregation analysis for obsessive compulsive disorder and related disorders. Am J Med Genet 88(1):38–43

    Article  PubMed  CAS  Google Scholar 

  • Chavira DA, Garrido H, Bagnarello M, Azzam A, Reus VI, Mathews CA (2007) A comparative study of obsessive–compulsive disorder in Costa Rica and the United States. Depress Anxiety

  • Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425. doi:nrg2779[pii]10.1038/nrg2779

    Article  PubMed  CAS  Google Scholar 

  • Dickel DE, Veenstra-VanderWeele J, Cox NJ, Wu X, Fischer DJ, Van Etten-Lee M, Himle JA, Leventhal BL, Cook EH Jr, Hanna GL (2006) Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive–compulsive disorder. Arch Gen Psychiatry 63(7):778–785

    Article  PubMed  CAS  Google Scholar 

  • Eapen V, Pauls DL, Robertson MM (2006) The role of clinical phenotypes in understanding the genetics of obsessive–compulsive disorder. J Psychosom Res 61(3):359–364

    Article  PubMed  Google Scholar 

  • Geller D, Petty C, Vivas F, Johnson J, Pauls D, Biederman J (2007) Further evidence for co-segregation between pediatric obsessive compulsive disorder and attention deficit hyperactivity disorder: a familial risk analysis. Biol Psychiatry 61(12):1388–1394

    Article  PubMed  Google Scholar 

  • Greenberg DA, Abreu P, Hodge SE (1998) The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 63(3):870–879. doi:10.1086/301997

    Article  PubMed  CAS  Google Scholar 

  • Hanna GL, Veenstra-VanderWeele J, Cox NJ, Boehnke M, Himle JA, Curtis GC, Leventhal BL, Cook EH Jr (2002) Genome-wide linkage analysis of families with obsessive–compulsive disorder ascertained through pediatric probands. Am J Med Genet 114(5):541–552

    Article  PubMed  Google Scholar 

  • Hanna GL, Fingerlin TE, Himle JA, Boehnke M (2005) Complex segregation analysis of obsessive–compulsive disorder in families with pediatric probands. Hum Hered 60(1):1–9

    Article  PubMed  Google Scholar 

  • Hanna GL, Veenstra-Vanderweele J, Cox NJ, Van Etten M, Fischer DJ, Himle JA, Bivens NC, Wu X, Roe CA, Hennessy KA, Dickel DE, Leventhal BL, Cook EH Jr (2007) Evidence for a susceptibility locus on chromosome 10p15 in early-onset obsessive-compulsive disorder. Biol Psychiatry 62(8):856–862

    Article  PubMed  CAS  Google Scholar 

  • Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, Juvonen H, Kokko-Sahin ML, Vaisanen L, Mannila H, Lonnqvist J, Peltonen L (1999) A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 65(4):1114–1124. doi:10.1086/302567

    Article  PubMed  CAS  Google Scholar 

  • Kas MJ, Gelegen C, van Nieuwerburgh F, Westenberg HG, Deforce D, Denys D (2010) Compulsivity in mouse strains homologous with chromosomes 7p and 15q linked to obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 153B(1):252–259. doi:10.1002/ajmg.b.30994

    PubMed  Google Scholar 

  • Kouzu Y, Moriya T, Takeshima H, Yoshioka T, Shibata S (2000) Mutant mice lacking ryanodine receptor type 3 exhibit deficits of contextual fear conditioning and activation of calcium/calmodulin-dependent protein kinase II in the hippocampus. Brain Res Mol Brain Res 76 (1):142–150. S0169328X99003447 [pii]

    Google Scholar 

  • Lab P Progeny Lab. http://www.progenygenetics.com/lab/index.html

  • Leckman JF, Sholomskas D, Thompson WD, Belanger A, Weissman MM (1982) Best estimate of lifetime psychiatric diagnosis: a methodological study. Arch Gen Psychiatry 39(8):879–883

    PubMed  CAS  Google Scholar 

  • Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 36 (Database issue):d820–d824. doi:10.1093/nar/gkm904

  • Leon PE, Raventos H, Lynch E, Morrow J, King MC (1992) The gene for an inherited form of deafness maps to chromosome 5q31. Proc Natl Acad Sci USA 89(11):5181–5184

    Article  PubMed  CAS  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. doi:10.1038/nature08494

    Article  PubMed  CAS  Google Scholar 

  • Mathews CA, Reus VI, Bejarano J, Escamilla MA, Fournier E, Herrera LD, Lowe TL, McInnes LA, Molina J, Ophoff RA, Raventos H, Sandkuijl LA, Service SK, Spesny M, Leon PE, Freimer NB (2004) Genetic studies of neuropsychiatric disorders in Costa Rica: a model for the use of isolated populations. Psychiatr Genet 14(1):13–23

    Article  PubMed  Google Scholar 

  • Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K, Takeshima H, Miyakawa T (2009) Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 3:3. doi:10.3389/neuro.08.003.2009

    PubMed  Google Scholar 

  • Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549. doi:10.1016/j.neubiorev.2007.09.005

    Article  PubMed  Google Scholar 

  • Morton-Jones RT, Cannell MB, Housley GD (2008) Ca2+ entry via AMPA-type glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine receptors in rat spiral ganglion neurons. Cell Calcium 43(4):356–366. doi:10.1016/j.ceca.2007.07.003

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Nishimura S, Maeda A, Barsoumian EL, Hakamata Y, Nakai J, Allen PD, Imoto K, Kita T (1997) Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett 417(1):157–162 S0014-5793(97)01275-1[pii]

    Article  PubMed  CAS  Google Scholar 

  • Nestadt G, Lan T, Samuels J, Riddle M, Bienvenu OJ 3rd, Liang KY, Hoehn-Saric R, Cullen B, Grados M, Beaty TH, Shugart YY (2000) Complex segregation analysis provides compelling evidence for a major gene underlying obsessive–compulsive disorder and for heterogeneity by sex. Am J Hum Genet 67(6):1611–1616

    Article  PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:12

    Article  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  • O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63(1):259–266. doi:10.1086/301904

    Article  PubMed  Google Scholar 

  • Pauls DL (2008) The genetics of obsessive compulsive disorder: a review of the evidence. Am J Med Genet C Semin Med Genet 148C(2):133–139

    Article  PubMed  Google Scholar 

  • Radwanska K, Tudor-Jones AA, Mizuno K, Pereira GS, Lucchesi W, Alfano I, Lach A, Kaczmarek L, Knapp S, Peter Giese K (2010) Differential regulation of CaMKII inhibitor beta protein expression after exposure to a novel context and during contextual fear memory formation. Genes Brain Behav. doi:10.1111/j.1601-183X.2010.00595.x

  • Rauch SL, Whalen PJ, Curran T, Shin LM, Coffey BJ, Savage CR, McInerney SC, Baer L, Jenike MA (2001) Probing striato-thalamic function in obsessive–compulsive disorder and Tourette syndrome using neuroimaging methods. Adv Neurol 85:207–224

    PubMed  CAS  Google Scholar 

  • Samuels J, Shugart YY, Grados MA, Willour VL, Bienvenu OJ, Greenberg BD, Knowles JA, McCracken JT, Rauch SL, Murphy DL, Wang Y, Pinto A, Fyer AJ, Piacentini J, Pauls DL, Cullen B, Rasmussen SA, Hoehn-Saric R, Valle D, Liang KY, Riddle MA, Nestadt G (2007) Significant linkage to compulsive hoarding on chromosome 14 in families with obsessive–compulsive disorder: results from the OCD Collaborative Genetics Study. Am J Psychiatry 164(3):493–499

    Article  PubMed  Google Scholar 

  • Schaid DJ (2009) pedigree.shrink. http://mayoresearch.mayo.edu/schaid_lab/software.cfm

  • Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, McCracken JT, Rauch SL, Murphy DL, Wang Y, Pinto A, Fyer AJ, Piacentini J, Pauls DL, Cullen B, Page J, Rasmussen SA, Bienvenu OJ, Hoehn-Saric R, Valle D, Liang KY, Riddle MA, Nestadt G (2006) Genomewide linkage scan for obsessive–compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol Psychiatry 11(8):763–770

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 52(3):121–131. doi:hhe52121[pii]

    Article  PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Petit A (2005) Molecular biology and genetics of Alzheimer’s disease. C R Biol 328(2):119–130

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Ikemoto T, Nishi M, Nishiyama N, Shimuta M, Sugitani Y, Kuno J, Saito I, Saito H, Endo M, Iino M, Noda T (1996) Generation and characterization of mutant mice lacking ryanodine receptor type 3. J Biol Chem 271(33):19649–19652

    Article  PubMed  CAS  Google Scholar 

  • Thiele H, Nurnberg P (2005) HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21(8):1730–1732. doi:10.1093/bioinformatics/bth488

    Article  PubMed  CAS  Google Scholar 

  • Uhrhammer N, Lange E, Porras O, Naeim A, Chen X, Sheikhavandi S, Chiplunkar S, Yang L, Dandekar S, Liang T et al (1995) Sublocalization of an ataxia-telangiectasia gene distal to D11S384 by ancestral haplotyping in Costa Rican families. Am J Hum Genet 57(1):103–111

    PubMed  CAS  Google Scholar 

  • Wang Y, Samuels JF, Chang YC, Grados MA, Greenberg BD, Knowles JA, McCracken JT, Rauch SL, Murphy DL, Rasmussen SA, Cullen B, Hoehn-Saric R, Pinto A, Fyer AJ, Piacentini J, Pauls DL, Bienvenu OJ, Riddle M, Shugart YY, Liang KY, Nestadt G (2009) Gender differences in genetic linkage and association on 11p15 in obsessive–compulsive disorder families. Am J Med Genet B Neuropsychiatr Genet 150B(1):33–40

    Article  PubMed  CAS  Google Scholar 

  • Wijsman EM, Rothstein JH, Thompson EA (2006) Multipoint linkage analysis with many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees. Am J Hum Genet 79(5):846–858. doi:10.1086/508472

    Article  PubMed  CAS  Google Scholar 

  • Willour VL, Yao Shugart Y, Samuels J, Grados M, Cullen B, Bienvenu OJ 3rd, Wang Y, Liang KY, Valle D, Hoehn-Saric R, Riddle M, Nestadt G (2004) Replication study supports evidence for linkage to 9p24 in obsessive–compulsive disorder. Am J Hum Genet 75(3):508–513

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E, Cornelis MC, Weir BS, Goddard ME, Visscher PM (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet. doi:10.1038/ng.823

  • Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34 (Web Server Issue):W635–W641. doi:10.1093/nar/gkl236

Download references

Acknowledgments

This research was performed at the University of California, San Francisco. This research was supported by Grants to CAM from the National Center for Research Resources (K23 RR015533), the National Alliance for Research on Schizophrenia and Affective Disorders, the Obsessive Compulsive Foundation, and The Althea Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Mathews.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J., Badner, J., Garrido, H. et al. Genomewide linkage analysis in Costa Rican families implicates chromosome 15q14 as a candidate region for OCD. Hum Genet 130, 795–805 (2011). https://doi.org/10.1007/s00439-011-1033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1033-6

Keywords

Navigation