Skip to main content

OCD Genomics and Future Looks

  • Chapter
  • First Online:
Applied Computational Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 13))

  • 954 Accesses

Abstract

Obsessive compulsive disorder (OCD) has been studied using various genetic analyses over the years. It has been of interest to identify potential risk genes that point to the susceptibility of the disorder. Segregation analyses were the initial methods to study these genes. Linkage analyses were then used and slowly replaced segregation analyses in the genomics field. Now, genome-wide association studies (GWAS) and meta-analyses are commonly used to study OCD, as well as other psychiatric disorders. All previous research on OCD has focused on common variants, and the hope is to shift toward studying rare variants in the future. This chapter discusses each of these methodologies in the context of OCD, as well as a look into what the future of OCD statistical analyses may hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310(5746):317–20. [PubMed: 16224024]

    Article  CAS  PubMed  Google Scholar 

  • Battaglia A, Hoyme HE, Dallapiccola B, Zackai E, Hudgins L, McDonald-McGinn D, et al. Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics. 2008;121:404–10.

    Article  PubMed  Google Scholar 

  • Bokor G, Anderson P. Obsessive-compulsive disorder. J Pharm Pract. 2014;27(2):116–30. https://doi.org/10.1177/0897190014521996.

    Article  PubMed  Google Scholar 

  • Bush WS, Moore JH. Chapter 11: genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavallini MC, Psaquale L, Bellodi L, Smeraldi E. Complex segegation analysis for obsessive compulsive disorder and related disorders. Am J Med Genet Neuropsychiatr Genet. 1999;88:38–43.

    Article  CAS  Google Scholar 

  • Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, et al. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet. 2013;9(10):e1003864. https://doi.org/10.1371/journal.pgen.1003864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Mooij-van Malsen AJ, van Lith HA, Oppelaar H, Hendriks J, de Wit M, Kostrzewa E, et al. Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol Psychiatry. 2009;66(12):1123–30. [PubMed: 19691954]

    Article  CAS  PubMed  Google Scholar 

  • Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, Pak DT, et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci. 2005;8(4):458–67. [PubMed: 15750591]

    Article  CAS  PubMed  Google Scholar 

  • Elston RC. Segregation analysis. In: Harris H, Hirschhorn K, editors. Advances in human genetics 11. Boston: Springer; 1981.

    Google Scholar 

  • Hanna GL, Fingerlin TE, Himle JA, Boehnke M. Complex segregation analysis of obsessive-compulsive disorder in families with pediatric probands. Hum Hered. 2005a;60(1):1–9. https://doi.org/10.1159/000087135.

    Article  PubMed  Google Scholar 

  • Hanna GL, Himle JA, Curtis GC, Gillespie BW. A family study of obsessive-compulsive disorder with pediatric probands. Am J Med Genet Neuropsychiatr Genet. 2005b;134B:13–9.

    Article  Google Scholar 

  • Kantojärvi K, Onkamo P, Vanhala R, Alen R, Hedman M, Sajantila A, et al. Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated with ASDs in Finnish sample. Psychiatr Genet. 2010;20(3):102–8. [PubMed: 20410850]

    PubMed  Google Scholar 

  • Kas MJ, Gelegen C, van Nieuwerburgh F, Westenberg HG, Deforce D, Denys D. Compulsivity in mouse strains homologous with chromosomes 7p and 15q linked to obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):252–9. [PubMed: 19514050]

    PubMed  Google Scholar 

  • Katerberg H, Delucchi KL, Stewart SE, Lochner C, Denys DA, Stack DE, et al. Symptom dimensions in OCD: item-level factor analysis and heritability estimates. Behav Genet. 2010;40(4):505–17. https://doi.org/10.1007/s10519-010-9339-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon SK, Woo J, Kim SY, Kim H, Kim E. Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem. 2010;285(18):13966–78. [PubMed: 20139422]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews CA, Badner JA, Andresen JM, Sheppard B, Himle JA, Grant JE, et al. Genome-wide linkage analysis of obsessive-compulsive disorder implicates chromosome 1p36. Biol Psychiatry. 2012;72(8):629–36. https://doi.org/10.1016/j.biopsych.2012.03.037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattheisen M, Samuels JF, Wang Y, et al. Genome-wide association study in obsessive compulsive disorder: results from the OCGAS. Mol Psychiatry. 2015;20:337–44. [PubMed: 24821223]

    Article  CAS  PubMed  Google Scholar 

  • Nestadt G, Samuels J, Riddle M, Bienvenu OJ III, Liang K-Y, LaBuda M, Walkup J, Grados M, Hoehn-Saric R. A family study of obsessive-compulsive disorder. Arch Gen Psychiatry. 2000a;57:358–63.

    Article  CAS  PubMed  Google Scholar 

  • Nestadt G, Lan T, Samuels J, Riddle M, Bienvenu O, Liang K, et al. Complex segregation analysis provides compelling evidence for a major gene underlying obsessive-compulsive disorder and for heterogeneity by sex. Am J Hum Genet. 2000b;67(6):1611–6. https://doi.org/10.1086/316898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pauls DL, Alsobrook JP II, Goodman W, Rasmussen S, Leckman JF. A family study of obsessive-compulsive disorder. Am J Psychiatry. 1995;152:76–84.

    Article  CAS  PubMed  Google Scholar 

  • Potkin SG, Turner JA, Fallon JA, Lakatos A, Keator DB, Guffanti G, et al. Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia. Mol Psychiatry. 2009;14(4):416–28. [PubMed: 19065146]

    Article  CAS  PubMed  Google Scholar 

  • Power RA, Tansey KE, Buttenschon HN, Cohen-Woods S, Bigdeli T, Hall LS, et al. Genome-wide association for major depression through age at onset stratification: major depressive disorder working group of the psychiatric genomics consortium. Biol Psychiatry. 2017;81:325–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulst SM. Genetic linkage analysis. Arch Neurol. 1999;56(6):667–72. https://doi.org/10.1001/archneur.56.6.667.

    Article  PubMed  CAS  Google Scholar 

  • Ripke S, Group SW, O’Donovan M. Current status of schizophrenia GWAS. Eur Neuropsychopharmacol. 2017;27:S415. https://doi.org/10.1016/j.euroneuro.2016.09.460.

    Article  Google Scholar 

  • Ritter ML, Guo W, Samuels JF, Wang Y, Nestadt PS, Krasnow J, et al. Genome wide association study (GWAS) between attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). Front Mol Neurosci. 2017;10(83). https://doi.org/10.3389/fnmol.2017.00083.

  • Rivière JB, Xiong L, Levchenko A, St-Onge J, Gaspar C, Dion Y, et al. Association of intronic variants of the BTBD9 gene with Tourette syndrome. Arch Neurol. 2009;66(10):1267–72. [PubMed: 19822783]

    Article  PubMed  Google Scholar 

  • Ross J, Badner J, Garrido H, Sheppard B, Chavira DA, Grados M, et al. Genomewide linkage analysis in Costa Rican families implicates chromosome 15q14 as a candidate region for OCD. Hum Genet. 2011;130(6):795–805. https://doi.org/10.1007/s00439-011-1033-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • S.A.G.E. (Statistical Analysis for Genetic Epidemiology), version 3.1. Computer program package, available from the Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland. 1997.

    Google Scholar 

  • Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med. 2010;16(5):598–602. 591p following 602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q and 6q. Mol Psychiatry. 2006;11(8):763–70. https://doi.org/10.1038/sj.mp.4001847.

    Article  PubMed  CAS  Google Scholar 

  • Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW, et al. A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch Gen Psychiatry. 2013;64(2):209–14. [PubMed: 17283288]

    Article  Google Scholar 

  • Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, et al. Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron. 2011;69(2):287–303. [PubMed: 21262467]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The International HapMap C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. [PubMed: 16255080]

    Article  CAS  Google Scholar 

  • Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci. 2009;12(4):428–37. [PubMed: 19252495]

    Article  CAS  PubMed  Google Scholar 

Web Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritter, M., Yao, Y. (2018). OCD Genomics and Future Looks. In: Yao, Y. (eds) Applied Computational Genomics. Translational Bioinformatics, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-1071-3_11

Download citation

Publish with us

Policies and ethics