Skip to main content
Log in

Genome-wide identification of the key kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L.)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available in supplementary file.

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Yang WC (2020) The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adh Migr 14(1):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Arenas M, Dos Santos HG, Posada D, Bastolla U (2013) Protein evolution along phylogenetic histories under structurally constrained substitution models. Bioinformatics 29(23):3020–3028

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202-208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49(7):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Sun J, Wang C, Dong Y, Xiao S, Wang X, Jiao Z (2017) Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PloS one 12(7):e0181843

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127(4):1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol 51(8):1315–1329

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Ioki M, Braybrook S, Li S, Ye ZH, Julie Lee YR, Hotta T, Chang A, Tian J, Wang G, Liu B (2015) Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8(7):1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Konjikusic MJ, Gray RS, Wallingford JB (2021) The developmental biology of kinesins. Dev Biol 469:26–36

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong SY, Edzuka T, Goshima G, Yamada M (2020) Kinesin-13 and Kinesin-8 function during cell growth and division in the Moss Physcomitrella patens. The Plant cell 32(3):683–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YJ, Zhu SH, Zhang XY, Liu YC, Xue F, Zhao LJ, Sun J (2017) Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber. BMC Biotechnol 17(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Lee YR (2001) Kinesin-related proteins in plant cytokinesis. J Plant Growth Regul 20:141–150

    Article  CAS  Google Scholar 

  • Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor Kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv GY, Guo XG, Xie LP, Xie CG, Zhang XH, Yang Y, Xiao L, Tang YY, Pan XL, Guo AG, Xu H (2017) Molecular characterization, gene evolution, and expression analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) gene family in Wheat (Triticum aestivum L.). Front Plant Sci 8:1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50(6):803–813

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476

    Article  CAS  PubMed  Google Scholar 

  • Moscatelli A, Tiezzi A, Vignani R, Cai G, Bartalesi A, Cresti M (1988) Presence of kinesin in tobacco pollen tubesexual reproduction in higher plants. (Sexual Reproduction in Higher Plants). Springer, Berlin, Heidelberg, pp 205–209

    Google Scholar 

  • Nie X, Huang C, You C, Li W, Zhao W, Shen C, Zhang B, Wang H, Yan Z, Dai B, Wang M, Zhang X, Lin Z (2016) Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics 17:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Oda Y, Fukuda H (2013) Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. The Plant Cell 25(11):4439–4450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T (2008) Gene families: formation and evolution. Encyclopedia of Life Sciences (ELS). Macmillan Publishers Ltd., London

    Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132(1):154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC genomics 2:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Han L, Feng Z, Wang G, Liu W, Ma Y, Yu Y, Kong Z (2015) Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife. 4(e09351):1–22

    Google Scholar 

  • Tian S, Jiang J, Xu GQ, Wang T, Liu Q, Chen X, Liu M, Yuan L (2021) Genome wide analysis of kinesin gene family in Citrullus lanatus reveals an essential role in early fruit development. BMC Plant Biol 21(1):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toleikis A, Carter NJ, Cross RA (2020) Backstepping Mechanism of Kinesin-1. Biophys J 119(10):1984–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move looking under the hood of molecular motor proteins. Science 288:88–95

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang F, Chen H, Pan J (2015) Progresses and prospects in microtubule depolymerizing Kinesin-13. Chin Sci Bull 60(20):1896–1905

    Article  Google Scholar 

  • Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49(4):579–587

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen L-L, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019a) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    Article  PubMed  Google Scholar 

  • Wang N, Ma Q, Ma J, Pei W, Liu G, Cui Y, Wu M, Zang X, Zhang J, Yu S, Ma L, Yu J (2019b) A comparative genome-wide analysis of the R2R3-MYB gene family among four Gossypium species and their sequence vriation and asociation wth fiber quality traits in an interspecific G. hirsutum x G. barbadense population. Front Genet. 10:741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang Z, Li F (2019c) Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J 17(9):1706–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Shi H, Xia Z, Tie W, Ding Z, Yan Y, Wang W, Hu W, Li K (2016) Genome-Wide identification and expression analysis of the WRKY gene family in Cassava. Front Plant Sci 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and Evolution of the Cotton Genus, GossypiumCotton. (Agronomy Monograph) American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., Madison. p 25-44.

  • Wheeler TJ, Eddy SR (2013) nhmmer: DNA homology search with profile HMMs. Bioinformatics 29(19):2487–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C, Wang J, Jiang L, Wan J (2014) Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep 33(2):235–244

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421(2):171–180

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ (2013) Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J Exp Bot 64(14):4541–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, Liu X, Zeng D, Li J, Zhou Y (2010) Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63(2):312–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat biotechnol 33(5):531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li Z, Jin J, Xie X, Zhang H, Chen Q, Luo Z, Yang J (2018) Genome-wide identification and analysis of the growth-regulating factor family in tobacco (Nicotiana tabacum). Gene 639:117–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Jiang Z, Chen J, Han Z, Chi J, Li X, Yu J, Xing C, Song M, Wu J, Liu F, Zhang X, Zhang J, Zhang J (2021) The cellulose synthase (CesA) gene family in four Gossypium species: phylogenetics, sequence variation and gene expression in relation to fiber quality in Upland cotton. Mol Genet Genom MGG 296(2):355–368

    Article  CAS  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed model analysis for association studies. Nat Genet 44(7):821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was supported by the Science and Technology Research Project of Jiangxi Province, China (Grant No. 20212BAB215009), and the Science and Technology Research Project of the Education Department of Jiangxi Province, China (Grant No. GJJ200440).

Author information

Authors and Affiliations

Authors

Contributions

TW: designed this project and analyzed the data, HZ and TW: drafted the manuscript, SW and HX: revised the manuscript, JX, KY, HZ and JW: collected the field data.

Corresponding author

Correspondence to Tianwang Wen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 595 KB)

Supplementary file2 (XLS 106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Xu, J., Yu, K. et al. Genome-wide identification of the key kinesin genes during fiber and boll development in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 299, 38 (2024). https://doi.org/10.1007/s00438-024-02093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-024-02093-x

Keywords

Navigation