Skip to main content
Log in

Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Members of the CrRLK1L family, a subgroup of the receptor-like kinase (RLK) gene family, are thought to act as sensors for the integrity of the cell wall and regulators of polar elongation. To better understand the various functions in fiber development, we conducted genome-wide identification and characterization analyses of CrRLK1L family in cotton. Here 44, 40, and 79 CrRLK1L genes were identified from three cotton species: diploid G. raimondii (D5), diploid G. arboreum (A2), and tetraploid G. hirsutum TM-1 (AD1), respectively. The 44 CrRLK1Ls in G. raimondii were anchored to the 12 chromosomes unevenly and were classified into six groups (I–VI), with group II and group IV being further divided into two subgroups (groups IIa and IIb, and IVa and IVb, respectively). These CrRLK1Ls displayed a highly regular pattern of developmental and spatial regulation in cotton. Using the transcriptome data of five chromosomal segment introgression lines (CSILs) and the physical integration of CrRLK1Ls with the quantitative trait loci (QTLs) related to fiber quality traits, we revealed that six CrRLK1L genes were highly associated with fiber development. This study brings new insights into the integrated genome-wide identification of CrRLK1Ls in cotton and provides references for the genetic improvement of cotton fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RLKs:

Receptor-like kinases

DPA:

Days post anthesis

qRT-PCR:

Quantitative real-time PCR

TAIR:

The Arabidopsis information resource

BLAST:

Basic local alignment search tool

CSILs:

Chromosomal segment introgression lines

QTLs:

Quantitative trait loci

FPKM:

Fragments per kilobase of exon model per million mapped reads

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson-Dernier A, Kessler SA, Grossniklaus U (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot 62:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai CP, Ye WX, Zhang TZ, Guo WZ (2014) Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/accessions (G. hirsutum L.). J Integr Plant Biol 56:51–62

    Article  CAS  PubMed  Google Scholar 

  • Duan QH, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1984) Qualitative genetics, cytology, and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. ASA/CSSA/SSSA, Madison, pp 81–129

    Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Tian RP, Li XH, Chen JD, Wang S, Wang P, Zhang TZ (2014a) Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genom 15:838

    Article  Google Scholar 

  • Fang L, Tian RP, Chen JD, Wang S, Li XH, Wang P, Zhang TZ (2014b) Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS ONE 9:e94642

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37

    Article  Google Scholar 

  • Gachomo EW, Jno Baptiste L, Kefela T, Saidel WM, Kotchoni SO (2014) The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC Plant Biol 14:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Li L, Ye HX, Yu XF, Algreen A, Yin Y (2009a) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:7648–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HQ, Ye H, Li L, Yin Y (2009b) A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 4:784–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han YF, YangQ Zhang SW, Sun DY, Sun Y (2011) Receptor like kinase CrRLK1-L subfamily: novel motifs in extracellular domain and biological functions in plants. Prog Biochem Biophys 38:891–899

    Article  CAS  Google Scholar 

  • Hématy K, Höfte H (2008) Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 11:321–328

    Article  PubMed  Google Scholar 

  • Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Hofte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931

    Article  PubMed  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Zhang XY, Zhang TZ, Guo WZ (2008) Molecular tagging and source analysis of QTL for elite fiber quality in upland Cotton. Acta Agron Sin 34:578–586

    Article  CAS  Google Scholar 

  • Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, Zhang TZ (2003) Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci 15:166–167

    Google Scholar 

  • Jiang YJ, Guo WZ, Zhu HY, Ruan YL, Zhang TZ (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312

    Article  CAS  PubMed  Google Scholar 

  • Kanaoka MM, Torii KU (2010) FERONIA as an upstream receptor kinase for polar cell growth in plants. Proc Natl Acad Sci USA 107:17461–17462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Tang HB, Wang XY, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lindner H, Muller LM, Boisson-Dernier A, Grossniklaus U (2012) CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol 15:659–669

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Mo HJ, Wang XF, Zhang Y, Zhang GY, Zhang JF, Ma ZY (2015) Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahlia. Plant J 83:962–975

    Article  CAS  PubMed  Google Scholar 

  • Nibau C, Cheung AY (2011) New insights into the functional roles of CrRLKs in the control of plant cell growth and development. Plant Signal Behav 6:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizard P, Ezan F, Bonnier D, Le Meur N, Langouet S, Baffet G, Arlot-Bonnemains Y, Theret N (2014) Integrative analysis of high-throughput RNAi screen data identifies the FER and CRKL tyrosine kinases as new regulators of the mitogenic ERK-dependent pathways in transformed cells. BMC Genom 15:1169

    Article  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Pogorelko G, Lionetti V, Bellincampi D, Zabotina O (2013) Cell wall integrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal Behav 8:e25435

    Article  PubMed  PubMed Central  Google Scholar 

  • Provenzano M, Mocellin S (2007) Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol 593:66–73

    Article  PubMed  Google Scholar 

  • Qin HD, Guo WZ, Zhang YM, Zhang TZ (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    Article  PubMed  Google Scholar 

  • Qin YS, Ye WX, Liu RZ, Zhang TZ, Guo WZ (2009) QTL mapping for fiber quality properties in upland cotton (Gossypium hirsutum L.) Sci Agri Sin 42:4145-4154

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Muth P, Irmler S, Schröder G, Schröder J (1996) Novel type of receptor-like protein kinase from a higher plant (Catharanthus roseus.) cDNA, gene, intramolecular autophosphorylation and identification of a threonine important for auto- and substrate phosphorylation. J Biol Chem 271:26684–26689

    Article  CAS  PubMed  Google Scholar 

  • Shen XL, Guo WZ, Zhu XX, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XX, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3:265–274

    Article  CAS  PubMed  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7:S10.1-10.12

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Guo WZ, Zhang TZ (2007) QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin 33:1915–1921

    CAS  Google Scholar 

  • Wang P, Ding YZ, Lu QX, Guo WZ, Zhang TZ (2008) Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chinese Sci Bull 53:1512–1517

    CAS  Google Scholar 

  • Wang C, Zhang TZ, Guo WZ (2012a) The im mutant gene negatively affects many aspects of fiber quality traits and lint percentage in cotton. Crop Sci 52:27–37

    Article  Google Scholar 

  • Wang P, Zhu YJ, Song XL, Cao ZB, Ding YZ, Liu BL, Zhu XF, Wang S, Guo WZ, Zhang TZ (2012b) Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 124:1415–1428

    Article  PubMed  Google Scholar 

  • Wang S, Chen JD, Zhang WP, Hu Y, Chang LJ, Fang L, Wan Q, Wang Q, Liang WH, Mei GF, MeQ Pan, Chen SQ, Cai CP, Zhu XF, Zhou BL, Guo WZ, Zhang TZ (2015) Structure variations and evolution of allopolyploidy cotton genomes. Genome Biol 16:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM (2009) Evolution and natural history of the cotton genus. In: Paterson AH, editor. Genetics and genomics of cotton plant genetics and genomics: crops and models. New York: Springer Science:3-22

  • Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004) Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol 135:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Qian LC, Nibau C, Duan QH, Kita D, Levasseur K, Li XQ, Lu CQ, Li H, Hou CC, Li LG, Buchanan BB, Chen LB, Cheung AY, Li DP, Luan S (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109:14693–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HB, Li YN, Wang BH, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genomics 2008:742304

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang TZ, Qian N, Zhu XF, Chen H, Wang S, Mei HX, Zhang YM (2013) Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE 8:e57220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski C, Scheffler B, Stelly D, Hulse-Kemp A, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride R, Chen XY, Dennis E, Llewellyn D, Peterson D, Thaxton P, Jones D, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao L, Liu YC, Li J, Lin Y, Hui YY, Cai ZS, Cai CP, Zhu XF, Zhi J, Zhou BL, Guo WZ, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhu HY, Han XY, Lv JH, Zhao L, Xu XY, Zhang TZ, Guo WZ (2011) Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC Plant Biol 11:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This program was financially supported in part by the National Natural Science Foundation of China (31471539), the National High Technology Research and Development Program of China (863 Program) (2012AA101108-04-04), the Key R & D program in Jiangsu Province (BE2015360), the Six talent peaks project in Jiangsu province (2015-NY-002), the Priority Academic Program Development of Jiangsu Higher Education Institutions (010-809001) and the JCIC-MCP project (No. 10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangzhen Guo.

Ethics declarations

Conflict of interest

The authors declared they had no conflict of interest.

Ethical approval

The experiments in this manuscript complied with the current laws of the country in which they were performed.

Additional information

Communicated by J. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Multiple sequence alignments of amino acids for 44 GrCrRLK1L genes (TIFF 5797 kb)

438_2016_1169_MOESM2_ESM.tiff

Fig. S2 Correlation analysis of the expression patterns obtained through expression profiling and qRT-PCR. Three cotton genes, GhEF1α (a), GhHis3 (b), and GhTub1 (c), were used as reference controls for qRT-PCR analysis. The X axis indicates the FPKM of expression profiling and the Y axis indicates the relative expression level of qRT-PCR (TIFF 156 kb)

Table S1 Gene primers used in this study (XLSX 14 kb)

Table S2 Sequence similarity and expression correlation of CrRLK1L genes in cotton (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, E., Cai, C., Zheng, Y. et al. Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genomics 291, 1137–1154 (2016). https://doi.org/10.1007/s00438-016-1169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1169-0

Keywords

Navigation