Skip to main content
Log in

Combination of GWAS and FST-based approaches identified loci associated with economic traits in sugarcane

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Sugarcane is a globally important plant for both sugar and biofuel production. Although conventional breeding has played an important role in increasing the productivity of sugarcane, it takes a long time to achieve breeding goals such as high yield and resistant to diseases. Molecular breeding, including marker-assisted breeding and genomic selection, can accelerate genetic improvement by selecting elites at the seedling stage with DNA markers. However, only a few DNA markers associated with important traits were identified in sugarcane. The purpose of this study was to identify DNA markers associated with sugar content, stalk diameter, and sugarcane top borer resistance. The sugarcane samples with trait records were genotyped using the restriction site-associated DNA sequencing (RADseq) technology. Using FST analysis and genome-wide association study (GWAS), a total of 9, 23 and 9 DNA variants (single nucleotide polymorphisms (SNPs)/insertions and deletions (indels)) were associated with sugar content, stalk diameter, and sugarcane top borer resistance, respectively. The identified genetic variants were on different chromosomes, suggesting that these traits are complex and determined by multiple genetic factors. These DNA markers identified by both approaches have the potential to be used in selecting elite clones at the seeding stage in our sugarcane breeding program to accelerate genetic improvement. Certainly, it is essential to verify the reliability of the identified DNA markers associated with traits before they are used in molecular breeding in other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The sequencing data can be found under the Bioproject accession: PRJDB15041.

References

  • Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyrén P, Uhlén M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280(1):103–110

    CAS  PubMed  Google Scholar 

  • Aitken KS (2022) History and development of molecular markers for sugarcane breeding. Sugar Tech 24(1):341–353. https://doi.org/10.1007/s12355-021-01000-7

    Article  CAS  Google Scholar 

  • Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li JC (2014) Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. https://doi.org/10.1186/s12870-014-0190-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Aldon D, Galaud J (2006) Plant calmodulins and calmodulin-related proteins. Plant Signal Behav 1:96–104

    PubMed  PubMed Central  Google Scholar 

  • Ali A, Wang JD, Pan YB, Deng ZH, Chen ZW, Chen RK, Gao SJ (2017) Molecular identification and genetic diversity analysis of chinese sugarcane (Saccharum spp. Hybrids) varieties using SSR markers. Trop Plant Biol 10(4):194–203. https://doi.org/10.1007/s12042-017-9195-6

    Article  CAS  Google Scholar 

  • Amos W, Driscoll E, Hoffman J (2011) Candidate genes versus genome-wide associations: which are better for detecting genetic susceptibility to infectious disease? Proc R Soc B Biol Sci 278(1709):1183–1188

    CAS  Google Scholar 

  • Bai B, Wang L, Zhang YJ, Lee M, Rahmadsyah R, Alfiko Y, Ye BQ, Purwantomo S, Suwanto A, Chua N-H (2018) Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Sci Rep 8:691

    PubMed  PubMed Central  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    PubMed  PubMed Central  Google Scholar 

  • Barreto FZ, Rosa J, Balsalobre TWA, Pastina MM, Silva RR, Hoffmann HP, de Souza AP, Garcia AAF, Carneiro MS (2019) A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS One 14:e0219843. https://doi.org/10.1371/journal.pone.0219843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch R, Maretzki A (1993) Transformation of sugarcane. In: Plant protoplasts and genetic engineering IV. Springer, p 348–360

  • Bordonal RdO, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, La Scala N (2018) Sustainability of sugarcane production in Brazil. A review. Agron Sustain Dev 38(2):13

    Google Scholar 

  • Brown JS, Schnell RJ, Power EJ, Douglas SL, Kuhn DN (2007) Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet Resour Crop Evol 54(3):627–648. https://doi.org/10.1007/s10722-006-0035-z

    Article  CAS  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22(11):3124–3140

    PubMed  PubMed Central  Google Scholar 

  • Chen XL, Huang ZH, Fu DW, Fang JT, Zhang XB, Feng XM, Xie JF, Wu B, Luo YJ, Zhu MF, Qi YW (2022) Identification of genetic loci for sugarcane leaf angle at different developmental stages by genome-wide association study. Front Plant Sci 13:841693. https://doi.org/10.3389/fpls.2022.841693

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb JN, Biswas PS, Platten JD (2019) Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet 132(3):647–667

    CAS  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    CAS  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels J, Roach B (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam

  • Debibakas S, Rocher S, Garsmeur O, Toubi L, Roques D, D’Hont A, Hoarau JY, Daugrois JH (2014) Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association. Theor Appl Genet 127(8):1719–1732. https://doi.org/10.1007/s00122-014-2334-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deomano E, Jackson P, Wei X, Aitken K, Kota R, Pérez-Rodríguez P (2020) Genomic prediction of sugar content and cane yield in sugar cane clones in different stages of selection in a breeding program, with and without pedigree information. Mol Breed 40(4):1–12

    Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43 (5):491–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doran AG, Creevey CJ (2013) Snpdat: easy and rapid annotation of results from de novo snp discovery projects for model and non-model organisms. BMC Bioinform 14:45

    Google Scholar 

  • Esselink G, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109(2):402–408

    CAS  PubMed  Google Scholar 

  • Fickett N, Gutierrez A, Verma M, Pontif M, Hale A, Kimbeng C, Baisakh N (2019) Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics 111(6):1794–1801. https://doi.org/10.1016/j.ygeno.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  • Fliegmann J, Uhlenbroich S, Shinya T, Martinez Y, Lefebvre B, Shibuya N, Bono J-J (2011) Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants. Plant Physiol Biochem 49(7):709–720

    CAS  PubMed  Google Scholar 

  • Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet 13(11):807–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs S, Grill E, Meskiene I, Schweighofer A (2013) Type 2C protein phosphatases in plants. FEBS J 280(2):681–693

    CAS  PubMed  Google Scholar 

  • Gao Y, Wang B, Xu Z, Li M, Song Z, Li W, Li Y (2015) Tobacco serine/threonine protein kinase gene NrSTK enhances black shank resistance. Genet Mol Res 14:16415–16424

    CAS  PubMed  Google Scholar 

  • Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2636

    Google Scholar 

  • Giovannoni M, Lironi D, Marti L, Paparella C, Vecchi V, Gust AA, De Lorenzo G, Nürnberger T, Ferrari S (2021) The Arabidopsis thaliana LysM-containing Receptor-Like Kinase 2 is required for elicitor-induced resistance to pathogens. Plant Cell Environ 44(12):3775–3792

    PubMed Central  Google Scholar 

  • Gouy M, Rousselle Y, Chane AT, Anglade A, Royaert S, Nibouche S, Costet L (2015) Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 202(2):269–284. https://doi.org/10.1007/s10681-014-1294-y

    Article  Google Scholar 

  • Hemaprabha G, Mohanraj K, Jackson PA, Lakshmanan P, Ali GS, Li AM, Huang DL, Ram B (2022) Sugarcane genetic diversity and major germplasm collections. Sugar Tech 24(1):279–297. https://doi.org/10.1007/s12355-021-01084-1

    Article  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188(4):379–397

    PubMed  PubMed Central  Google Scholar 

  • Kannan B, Liu H, Shanklin J, Altpeter F (2022) Towards oilcane: preliminary field evaluation of metabolically engineered sugarcane with hyper-accumulation of triacylglycerol in vegetative tissues. Mol Breed. https://doi.org/10.1007/s11032-022-01333-5

    Article  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica). Plant Methods 9:93

    Google Scholar 

  • Kwok P-Y (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2(1):235–258

    CAS  PubMed  Google Scholar 

  • Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50(11):1001–1013

    CAS  PubMed  Google Scholar 

  • Lee K-J, Kim K (2015) The rice serine/threonine protein kinase OsPBL1 (ORYZA SATIVA ARABIDOPSIS PBS1-LIKE 1) is potentially involved in resistance to rice stripe disease. Plant Growth Regul 77(1):67–75

    CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-R, Yang L-T (2015) Sugarcane agriculture and sugar industry in China. Sugar Tech 17(1):1–8

    Google Scholar 

  • Li P, Li G, Zhang Y-W, Zuo J-F, Liu J-Y, Zhang Y-M (2022) A combinatorial strategy to identify various types of QTLs for quantitative traits using extreme phenotype individuals in an F2 population. Plant Commun 3(3):100319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-B, Lu S-M, Zhang J-F, Liu S, Lu Y-T (2007) A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta 226(6):1547–1560

    CAS  PubMed  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis J, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    CAS  PubMed  Google Scholar 

  • O’Connell A, Deo J, Deomano E, Wei X, Jackson P, Aitken KS, Manimekalai R, Mohanraj K, Hemaprabha G, Ram B (2022) Combining genomic selection with genome-wide association analysis identified a large-effect QTL and improved selection for red rot resistance in sugarcane. Front Plant Sci 13:1021182

    PubMed  PubMed Central  Google Scholar 

  • Platten JD, Cobb JN, Zantua RE (2019) Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection. PLoS One 14(1):e0210529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poosapati S, Poretsky E, Dressano K, Ruiz M, Vazquez A, Sandoval E, Estrada-Cardenas A, Duggal S, Lim JH, Morris G, Szczepaniec A, Walse SS, Ni XZ, Schmelz EA, Huffaker A (2022) A sorghum genome-wide association study (GWAS) identifies a WRKY transcription factor as a candidate gene underlying sugarcane aphid (Melanaphis sacchari) resistance. Planta 255:37. https://doi.org/10.1007/s00425-021-03814-x

    Article  CAS  PubMed  Google Scholar 

  • Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Müller T, Kräutler B, Hörtensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19(1):369–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racedo J, Gutierrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP (2016) Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol 16:142. https://doi.org/10.1186/s12870-016-0829-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha JC, de Almeida CP, Reis FC, Filho RV, Tornisielo VL, Zucchi MI, Benchimol-Reis LL (2022) Population structure and genetic relatedness in Brazilian Bermudagrass from sugarcane plantations. Genet Mol Res 21:gmr19010. https://doi.org/10.4238/gmr19010

    Article  Google Scholar 

  • Saksena HB, Singh D, Sharma M, Jamsheer K, Jindal S, Sharma M, Tiwari A, Rawat SS, Laxmi A (2020) Protein phosphatases at the interface of sugar and hormone signaling pathways to balance growth and stress responses in plants. In: Protein phosphatases and stress management in plants. Springer, p 103–123

  • Santure AW, Garant D (2018) Wild GWAS—association mapping in natural populations. Mol Ecol Resour 18(4):729–738

    PubMed  Google Scholar 

  • Schielzeth H, Rios Villamil A, Burri R (2018) Success and failure in replication of genotype–phenotype associations: how does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Mol Ecol Resour 18(4):739–754

    PubMed  Google Scholar 

  • Senthilkumar S, Vinod KK, Parthiban S, Thirugnanasambandam P, Pathy TL, Banerjee N, Padmanabhan TSS, Govindaraj P (2022) Identification of potential MTAs and candidate genes for juice quality- and yield-related traits in Saccharum clones: a genome-wide association and comparative genomic study. Mol Genet Genomics 297(3):635–654. https://doi.org/10.1007/s00438-022-01870-w

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Du X (2020) Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii. Sci Rep 10:7474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Mishra SK, Singh SP, Mishra N, Sharma ML (2010) Evaluation of microsatellite markers for genetic diversity analysis among sugarcane species and commercial hybrids. Aust J Crop Sci 4(2):116–125

    Google Scholar 

  • Solomon S (2016) Sugarcane production and development of sugar industry in India. Sugar Tech 18(6):588–602

    Google Scholar 

  • Tabone T, Mather DE, Hayden MJ (2009) Temperature switch PCR (TSP): robust assay design for reliable amplification and genotyping of SNPs. BMC Genomics 10:580

    PubMed  PubMed Central  Google Scholar 

  • Tang Y, Li M, Chen Y, Wu P, Wu G, Jiang H (2011) Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168(16):1952–1959

    CAS  PubMed  Google Scholar 

  • Togninalli M, Seren Ü, Meng D, Fitz J, Nordborg M, Weigel D, Borgwardt K, Korte A, Grimm DG (2018) The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids Res 46(D1):D1150–D1156

    CAS  PubMed  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120

    CAS  PubMed  Google Scholar 

  • Wang W, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6(2):109–118

    CAS  PubMed  Google Scholar 

  • Wang L, Wan ZY, Bai B, Huang SQ, Chua E, Lee M, Pang HY, Wen YF, Liu P, Liu F (2015) Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass. Sci Rep 5:16358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu P, Huang S, Ye B, Chua E, Wan ZY, Yue GH (2017) Genome-wide association study identifies loci associated with resistance to viral nervous necrosis disease in Asian seabass. Mar Biotechnol 19(3):255–265

    CAS  Google Scholar 

  • Wang H, Dang J, Wu D, Xie Z, Yan S, Luo J, Guo Q, Liang G (2021a) Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica). Plant Methods 17:93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sun F, Wan ZY, Ye B, Wen Y, Liu H, Yang Z, Pang H, Meng Z, Fan B (2021b) Genomic basis of striking fin shapes and colors in the fighting fish. Mol Biol Evol 38(8):3383–3396

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Lee M, Sun F, Song Z, Yang Z, Yue GH (2022a) A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. Plant Commun 3(4):100326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sun F, Lee M, Yue G-H (2022b) Whole-genome resequencing infers genomic basis of giant phenotype in Siamese fighting fish (Betta splendens). Zool Res 43(1):78

    PubMed  PubMed Central  Google Scholar 

  • Wang TY, Fang JP, Zhang JS (2022c) Advances in sugarcane genomics and genetics. Sugar Tech 24(1):354–368. https://doi.org/10.1007/s12355-021-01065-4

    Article  CAS  Google Scholar 

  • Wangler MF, Hu Y, Shulman JM (2017) Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech 10(2):77–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Eglinton J, Piperidis G, Atkin F, Morgan T, Parfitt R, Hu F (2022) Sugarcane breeding in Australia. Sugar Tech 24(1):151–165

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Google Scholar 

  • Yang XP, Sood S, Luo ZL, Todd J, Wang JP (2019) Genome-wide association studies identified resistance loci to orange rust and yellow leaf virus diseases in sugarcane (Saccharum spp.). Phytopathology 109(4):623–631. https://doi.org/10.1094/phyto-08-18-0282-r

    Article  CAS  PubMed  Google Scholar 

  • Yeo S, Lee M, Wang L, Endah S, Alhuda NA (2023) Microsatellite analysis of genetic diversity and relationships in 1027 sugarcane accessions. Sugar Tech. https://doi.org/10.1007/s12355-023-01278-9

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15(3):376–396

    Google Scholar 

  • Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our former laboratory member Lai CC for technical support and scientists in GMP for collecting field data and leaf samples. We are grateful to our sequencing facilities for supporting the DNA sequencing and genotyping.

Funding

This study is supported by PT Gunung Madu Plantation (GMP) (Grant no. 9350) and the internal funding of the Temasek Life Sciences Laboratory, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

GHY and SE conceived the experiment. SY, ML, NAA, SE, and LW performed the research on phenotyping and genotyping. LW analyzed the sequence data and conducted GWAS. LW and GHY drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. H. Yue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yeo, S., Lee, M. et al. Combination of GWAS and FST-based approaches identified loci associated with economic traits in sugarcane. Mol Genet Genomics 298, 1107–1120 (2023). https://doi.org/10.1007/s00438-023-02040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02040-2

Keywords

Navigation