Skip to main content

Advertisement

Log in

Sugarcane Genetic Diversity and Major Germplasm Collections

  • S.I. : History of sugarcane breeding and molecular genetics
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Genetic diversity present in the sugarcane germplasm, among different Saccharum species and related taxa, represents a large reservoir of genes to develop new varieties and hybrids for any character or ecosystem. Every country engaged in sugarcane improvement retains a collection of sugarcane clones, which evolves over time with new additions. Sugarcane improvement became a professionally directed and scientific endeavour in the early twentieth century. At around this time researchers in India and Indonesia also developed inter-specific hybrids between Saccharum officinarum and S. spontaneum, which formed the founding clones for variety development worldwide. Since then, inter-specific crosses formed the basis for the development of the modern sugarcane industry globally. Deleterious effects of climate, human activities and growing importance of the crop for the production of sugar, ethanol and energy from its biomass add to the importance of research attention to preserve, characterize and utilize accessions from all the genera in the Saccharum complex in a systematic way. It is obvious that the genetic resources have been utilized to a considerable extent by different workers, although success in terms of released varieties has been limited to a handful of ancestor clones from S. officinarum, S. spontaneum and S. barberi. However, reports of many hybrids developed from various species combinations, several of which are novel creations, have attained commercial-level or near-commercial-level clones are encouraging. All the activities connected with collection, preservation, characterization, documentation and utilization should aim to be more systematic through conventional breeding, genomic breeding and gene harvesting. Aided by the powerful molecular, genomic and bioinformatics tools, the genetic diversity available in the germplasm offers opportunities to design and develop sugarcane varieties with substantial yield improvement under any situations and for generating diversified products in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, E.V. 1971. History of the U.S. Sugar cane field station at Houma, Louisiana. Sugar Y Azucar 66 (10): 69–71.

    Google Scholar 

  • Adhini, S.P., A.A. Durai, and P. Govindaraj. 2017. Co 205; The Coimbatore legacy. In Proceedings of international symposium on sugarcane research since Co 205: 100 Years and Beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 173–176. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Aitken, K., J.C. Li, P. Jackson, G. Piperidis, and C.L. McIntyre. 2006. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Australian Journal of Agricultural Research 57: 1167–1184.

    CAS  Google Scholar 

  • Aitken, K., J. Li, L. Wang, C. Qing, Y.H. Fan, and P. Jackson. 2007. Characterization of inter-generic hybrids of Erianthus rockii and Saccharum using molecular markers. Genetic Resources and Crop Evolution 54 (7): 1395–1405.

    CAS  Google Scholar 

  • Alarmelu, S., S. P. Adhini, C. Jayabose and T. Manjunatha. 2017. Pre-breeding utilizing the improved intraspecific clones of Saccharum spp, In Proceedings of international symposium on sugarcane research since Co 205: 100 years and beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 7–10. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Ali, A., Y.B. Pan, Q.N. Wang, J.D. Wang, J.L. Chen, and S. Gao. 2019. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Scientific Reports 9: 395. https://doi.org/10.1038/s41598-018-36630-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alwala, S., A. Suman, J.A. Arro, J.C. Veremis, and C.A. Kimbeng. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collection. Crop Science 46: 448–455.

    CAS  Google Scholar 

  • Amalraj, V.A., and N. Balasundaram. 2006. On the taxonomy of the members of “Saccharum complex”. Genetic Resources and Crop Evolution 53: 35–41.

    Google Scholar 

  • Amalraj, V.A., P. Rakkiyappan, D. Neelamathi, S. Chinnaraj, and S. Subramanian. 2008. Wild cane as a renewable source for fuel and fibre in the paper industry. Current Science 95: 1599–1602.

    Google Scholar 

  • Anonymous 1934. Scientific Report of the Imperial Institute of Agriculture Research. Pusa for 1932–33, 221.

  • Arceneaux, G. 1967. Cultivated sugarcanes of the world and their botanical derivation. Proceedings of International Society of Sugar Cane Technologists 12: 844–854.

    Google Scholar 

  • Arro, J.A., J.C. Veremis, C.A. Kimbeng, and C. Botanga. 2006. Genetic diversity and relationships revealed by AFLP markers among Saccharum spontaneum and related species and genera. Journal of the American Society of Sugar Cane Technologists 26: 101–115.

    Google Scholar 

  • Balakrishnan, R., N.V. Nair, and T.V. Sreenivasan. 2000. A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genetic Resources and Crop Evolution 47: 1–9.

    Google Scholar 

  • Barber, C.A. 1916. Classification of indigenous Indian canes. Agricultural Journal of India 11 (4): 371–376.

    Google Scholar 

  • Barber, C.A. 1922. The classification of Indian canes. International Sugar Journal 24: 18–21.

    Google Scholar 

  • Berding, N., and B.T. Roach. 1987. Taxonomy and evolution. In Sugarcane improvement through breeding, ed. D.J. Heinz, 7–85.

  • Besse, P., G. Taylor, B. Carroll, N. Berding, D. Burner, and C.L. McIntyre. 1998. Assessing genetic diversity in a sugarcane germ- plasm collection using an automated AFLP analysis. Genetica (The Hague) 104: 143–153.

    CAS  Google Scholar 

  • Brandes, E.W. 1956. Origin, dispersal and use in breeding of the Melanesian garden sugarcanes and their derivative, Saccharum officinarum. L. Proceedings of the International Society of Sugar Cane Technologists 9: 709–760.

    Google Scholar 

  • Brandes, E.W., and G.B. Sartoris. 1936. Sugarcane: Its origin and improvement. Yearbook u.s. Department of Agriculture’s 1936: 561–624.

    Google Scholar 

  • Bremer, G. 1923. A cytological investigation of some species and species hybrids within the genus Saccharum. Genetica 5: 97–148 and 273–326.

  • Brett, A.H. 1949. Further report on sugarcane breeding in South Africa. Proceedings of the South African Sugar Technologists’ Association 23: 108–114.

    Google Scholar 

  • Cai, Q., K. Aitken, H.H. Deng, X.W. Chen, C. Fu, P.A. Jackson, and C.L. Mcintyre. 2005. Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breeding 124 (4): 322–328.

    CAS  Google Scholar 

  • Cai, Q., K. Aitken, H.H. Deng, X.W. Chen, P.A. Jackon, and C.A. Mclntyre. 2004. Verification of the introgression of Erianthus arundinaceus germplasm in to sugarcane using molecular markers. Plant Science 169: 976–984.

    Google Scholar 

  • Chandran, K., M. Nisha, and P.P. Gireesan. 2017. Characterization of inter-specific progenies from polycrosses of two Saccharum robustum clones belonging to the forma ‘sanguineum’. In Proceedings of international symposium on sugarcane research since CO 205: 100 years and beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 3–5. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Chang, H., Q. Wang, Y. Qiu, Y. Qin, and N. Fang. 2020. Production, identification and characterization of Erianthus rockii × Narenga porphyrocoma inter-generic hybrids as a new germplasm for sugarcane breeding and genetic research. Sugar Tech 22 (6): 389–395.

    CAS  Google Scholar 

  • Clayton, W.D., and S.A. Renvoize. 1986. Genera graminum: grasses of the world. London, UK: Her Majesty's Stationery Office.

    Google Scholar 

  • Costet, L., L. Le Cunff, S. Royaert, L.-M. Raboin, C. Hervouet, L. Toubi, H. Telismart, O. Garsmeur, Y. Rousselle, J. Pauquet, S. Nibouche, J.-C. Glaszmann, J.-Y. Hoarau, and A. D’Hont. 2012. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theoretical and Applied Genetics 125: 825–836.

    CAS  PubMed  Google Scholar 

  • D’Hont, A., G.M. Souza, M. Menossi, M. Vincentz, M.A. Van-Sluys, J.C. Glaszmann, and E. Ulian. 2008. Sugarcane: A major source of sweetness, alcohol, and bio-energy. In Plant genetics and genomics: Crops and models, vol. 1, ed. P.H. Moore and R. Ming, 483–513. New York: Springer.

    Google Scholar 

  • D’Hont, A., F. Paulet, and J.C. Glaszmann. 2002. Oligoclonal inter-specific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Research 10: 253–262.

    PubMed  Google Scholar 

  • D’Hont, A., P.S. Rao, P. Feldmann, L. Grivet, N. Islam-Faridi, P. Taylor, and J.C. Glaszmann. 1995. Identification and characterization of sugarcane inter-generic hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theoretical and Applied Genetics 91: 320–326.

    PubMed  Google Scholar 

  • Daniels, J., and B.T. Roach. 1987. Taxonomy and evolution. In Sugarcane improvement through breeding, ed. D.J. Heinz, 7–84. New York: Elsevier.

    Google Scholar 

  • Deng, H.H., Z.Z. Liao, Q.W. Li, F.Y. Lao, C. Fu, X.W. Chen, C.M. Zhang, S.M. Liu, and Y.H. Yang. 2002. Breeding and isozyme marker assisted selection of F2 hybrids from Saccharum spp. 9 Erianthus arundinaceus. Sugarcane and Canesugar 1: 1–5 (in Chinese).

    Google Scholar 

  • Duncleman, P.H., and R.D. Breaux. 1970. New sugarcane breeding clones from Indian crosses evaluated at Houma, LA, 1966–1969. International Sugar Journal 72: 43–44.

    Google Scholar 

  • Duncleman, P.H., and R.D. Breaux. 1972. Breeding sugar cane varieties for Louisiana with new germplasm. Proceedings of the International Society of Sugar Cane Technologists 14: 233–239.

    Google Scholar 

  • Edme, S.J., J.C. Comstock, J.D. Miller, and P.Y.P. Tai. 2005. Determination of DNA content and genome size in sugarcane. Journal of American Society of Sugar Cane Technologists 25: 1–16.

    Google Scholar 

  • Egan, B.T. 1995. Role of ISSCT in promoting sugarcane germplasm collections and their maintenance. In Sugarcane Germplasm conservation and exchange. Report of an international workshop held in Brisbane, Qld, Australia, eds. B.J. Croft, C.M. Piggin, E.S. Wallis, and D.M. Hogarth. Australian Centre for International Agricultural Research, Proceedings number 67.

  • Evans, D.L., and S.V. Joshi. 2016. Complete chloroplast genomes of Saccharum spontaneum, Saccharum officinarum and Miscanthus floridulus (Panicoideae: Andropogoneae) reveal the plastid view on sugarcane origins. Systematics and Biodiversity 14 (6): 548–571. https://doi.org/10.1080/14772000.2016.1197336.

    Article  Google Scholar 

  • Fu, C., S.M. Liu, Q.W. Wu, C.M. Zhang, and Y.H. Yang. 2012. Evaluation of Saccharum inter-generic hybrids Yacheng 01–92 backcross selected strains containing Hainan Erianthus arundinaceus bloodline. Guangdong Agricultural Science 39 (17): 17–20 (in Chinese).

    Google Scholar 

  • Fukuhara, S., Y. Terajima, S. Irei, T. Sakaigaichi, K. Ujihara, A. Sugimoto, and M. Matsuoka. 2013. Identification and characterization of inter-generic hybrid of commercial sugarcane (Saccharum spp. hybrid) and Erianthus arundinaceus (retz.) jeswiet. Euphytica 189 (3): 321–327.

    Google Scholar 

  • Govindaraj, P. 2017. Energycane for offseason production of biomass feedstock for distillery and cogeneration units. In Proceedings of international symposium on sugarcane research since Co 205: 100 years and beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 570–572. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Grassl, C.O. 1967. Introgression between Saccharum and Miscanthus in N. Guinea & Pacific. Proceedings of International Society of Sugar Cane Technologists 12: 995–1003.

    Google Scholar 

  • Grivet, L., J.C. Glaszman, and A. d’Hont. 2006. Molecular evidences for sugarcane evolution and domestication. In Darwin’s Harvest. New approaches to the origins, evolution and conservation of crops, ed. T. Motley, N. Zarega, and H. Cross, 49–66. New York, NY: Columbia University Press.

    Google Scholar 

  • Hale, A.L., J.W. Hoy, and J.C. Veremis. 2010. Identification of sources of resistance to sugarcane red rot. Proceedings of International Society of Sugar Cane Technologists 27: 1–8.

    Google Scholar 

  • Heaton, E.A., N. Boersma, J.D. Caveny, T.B. Voigt, and F.G. Dohleman. 2019. Miscanthus (Miscanthus x giganteus) for biofuel Production. April 3, https://farm-energy.extension.org

  • Hemaprabha, G., and B. Ram. 1993. Genetic variability in nobilization stages of Saccharum robustum Brandes et Jeswiet ex Grassl. Sugarcane 6: 6–9.

    Google Scholar 

  • Hemaprabha, G., and D.L. Lavanya. 2015. Sucrose specific TRAP markers as genus and species specific markers in Saccharum and Erianthus spp. Indian Journal of Genetics and Plant Breeding 75 (1): 99–104.

    CAS  Google Scholar 

  • Hemaprabha, G., and S.R. Sree Rangasamy. 2001. Genetic similarity among five species of Saccharum based on isozyme and RAPD markers. Indian Journal of Genetics and Plant Breeding 61 (4): 341–347.

    CAS  Google Scholar 

  • Hemaprabha, G., K. Mohanraj, S. Alarmelu and B. Ram. 2017. Relative performance of Coimbatore canes (Co canes ) for major component traits of yield and quality and an analysis of their genealogies to measure genetic gain over a century of sugarcane breeding at ICAR Sugarcane Breeding Institute. In International symposium on sugarcane research since Co 205: 100 years and beyond (SucroSym 2017) held from 18–21 Sep, 2018 at Coimbatore, 98–102.

  • Hemaprabha, G., K. Mohanraj, S. Alarmelu, and Bakshi Ram. 2020. Assessment of breeding methods and parental value of Co canes developed during 1918–2017. Journal of Sugarcane Research 10: 24–31.

    Google Scholar 

  • Hemaprabha G., K. Mohanraj, K. Chandran, S. Alarmelu and Bakshi Ram. 2021. Parental diversity in Indian commercial sugarcane varieties-Past, Present and Future. In International conference on sugarcane research: Sugarcane for sugar and beyond, June 19–22, 2021, 41–47. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Heinz, D.J. 1980. Thailand S. spontaneum hybrid progeny as a new germplasm source in Hawaii. Proceedings of International Society of Sugar Cane Technologists 17: 1347–1356.

    Google Scholar 

  • Hermann, S.R., K.S. Aitken, P. Jackson, P.A. George, and N. Piperidis. 2012. Evidence for second division restitution as the basis for 2n + n maternal chromosome transmission in a sugarcane cross. Euphytica 187: 359–368.

    Google Scholar 

  • Hodkinson, T.R., M.W. Chase, M.D. Lledó, N. Salamin, and S.A. Renvoize. 2002. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research 115: 381–392.

    CAS  PubMed  Google Scholar 

  • Huang, Y., J. Wu, P. Wang, Y. Lin, C. Fu, Z. Deng, Q. Wang, Q. Li, R. Chen, and M. Zhang. 2015. Characterization of chromosome inheritance of the inter-generic BC2 and BC3 progeny between Saccharum spp. and Erianthus arundinaceus. PLoS ONE 10 (7): e0133722.

    PubMed  PubMed Central  Google Scholar 

  • Irvine, J.E. 1999. Saccharum species as horticultural classes. Theoretical and Applied Genetics 98: 186–194.

    Google Scholar 

  • Jackson, R.D., and P.H. Dunckelman. 1974. Relative resistance of Saccharum spontaneum clones to the sugarcane borer. Proceedings of International Society of Sugar Cane Technologists 15: 513–515.

    Google Scholar 

  • James, G. 2004. Sugarcane, 216. London: Blackwell Science Ltd.

    Google Scholar 

  • Janaki Ammal, E.K. 1938a. Chromosome numbers in sugarcane bamboo hybrids. Nature 141: 125.

    Google Scholar 

  • Janaki Ammal, E.K. 1938b. Saccharum x Zea cross. Nature 141: 618–619.

    Google Scholar 

  • Janaki Ammal, E.K. 1941. Inter-generic hybrids of Saccharum. Journal of Genetics 41 (2/3): 217–253.

    Google Scholar 

  • Janaki Ammal, E.K., and T.S.N. Singh. 1936. Preliminary note on a few Sacchrum x Sorghum hybrid. Indian Journal of Agricultural Sciences 6 (5): 1105–1106.

    Google Scholar 

  • Kandasamy, P.A., and A. Thiravium. 1987. Utilization of Saccharum robustum in breeding. Sugar Cane 3: 3–7.

    Google Scholar 

  • Kandasamy, P.A., T.V. Sreenivasan, T.C. Ramanarao, K. Palanichamy, B.V. Natarajan, K.C. Alexander, M.M. Rao, and D. Mohan Raj. 1983. Catalogue on sugarcane genetic resources (Saccharum spontaneum) 1. Coimbatore: ICAR-Sugarcane Breeding Institute.

    Google Scholar 

  • Kellogg, E.A. 2013. Phylogenetic relationships of Saccharinae and Sorghinae, 3–21. New York, NY: Genomics of the Saccharinae. Springer.

    Google Scholar 

  • Lalitha, R., and M.N. Premachandran. 2007. Meiotic abnormalities in inter-generic hybrids between Saccharum spontaneum and Erianthus arundinaceus (Gramineae). Cytologia 72: 337–343.

    Google Scholar 

  • Lekshmi, M., S.P. Adhini, V.P. Sobhakumari, and M.N. Premachandran. 2017. Nuclear and cytoplasmic contributions from Erianthus arundinaceus (Retz.) Jeswiet in a sugarcane hybrid clone confirmed through genomic in situ hybridization and cytoplasmic DNA polymorphism. Genetic Resources and Crop Evolution 64: 1553–1560.

    CAS  Google Scholar 

  • Liu, X.L., X.J. Li, C.H. Xu, X.Q. Lin, and Z.H. Deng. 2016. Genetic diversity of populations of Saccharum spontaneum with different ploidy levels using SSR molecular markers. Sugar Tech 18: 365–372.

    CAS  Google Scholar 

  • Lu, Y.H., A. D’Hont, D.I.T. Walker, and P.S. Rao. 1994. Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78: 7–18.

    Google Scholar 

  • Mangelsdorf, A.J. 1983. Cytoplasmic diversity in relation to pests and pathogens. ISSCT Sugarcane Breeding Newsletter 45: 45–49.

    Google Scholar 

  • Mary, S., P.K. Chaturvedi, N.V. Nair, and A. Selvi. 2006. Analysis of Genetic Diversity among Saccharum spontaneum L. Genetic Resources and Crop Evolution 53 (6): 1221–1231.

    CAS  Google Scholar 

  • Miller, J.D., P.Y. Tai, S.J. Edme, J.C. Comstock, B.S. Glaz, and R.A. Gilbert. 2005. Basic germplasm utilization in the sugarcane development program at Canal Point, FL, USA. International Society of Sugar Cane Technologists Proceedings 2: 532–536.

    Google Scholar 

  • Milligan, S.B., F.A. Martin, K.P. Bischoff, O. Quebedeaux, E.O. Dufrene, K.L. Quebedeaux, J.W. Hoy, T.E. Reagan, B.L. Legendre, and J.D. Miller. 1994. Registration of ‘LCP 85–384’ Sugarcane. Crop Science 34 (3): 819–820.

    Google Scholar 

  • Mohanraj, K., G. Hemaprabha, S. Vasantha, and R.Raja. 2017. Developing multiparent advanced generation inter-cross (MAGIC) population in sugarcane: Evaluation of founder parents for drought tolerance. In Proceedings of international symposium on sugarcane research since Co 205: 100 years and beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 11–13, September 18–21, 2017. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Mukherjee, S.K. 1950. Search for wild relatives of sugarcane in India. International Sugar Journal 52: 261–262.

    Google Scholar 

  • Mukherjee, S.K. 1957. Origin and distribution of Saccharum. Botanical Gazette 119: 55–61.

    Google Scholar 

  • Naidu, K.M., and T.V. Sreenivasan. 1987. Genetic resources of sugarcane and importance of wild relatives. In Plant genetic resources-indian perspective, ed. R.S. Paroda, R.K. Arora, and K.P.S. Chandel, 398–408. New Delhi: NBPGR.

    Google Scholar 

  • Nair, N.V. 2002. Sugarcane genetic resources, their collection, conservation, evaluation and utilization. In Winter School on sugarcane breeding and genetics in retrospect and prospects, 3–23 October, 2002. Coimbatore: Sugarcane Breeding Institute.

  • Nair, N.V. 2012. Sugarcane genetic resources: Status, potential; and role in sugarcane improvement. In Proceedings of international symposium on sugarcane research since Co 205: 100 years and beyond (SucroSym 2017), eds. G. Hemaprabha, R. Viswanathan, T. Ramasubramanian, A. Bhaskaran, K. Mohanraj, Bakshi Ram, 1–8. Coimbatore: ICAR-Sugarcane Breeding Institute.

  • Nair, N.V., K. Mohanraj, K. Sunadaravelpandian, A. Suganya, A. Selvi, and C. Appunu. 2017. Characterization of an inter-generic hybrid of Erianthus procerus × Saccharum officinarum and its backcross progenies. Euphytica 213: 267. https://doi.org/10.1007/s10681-017-2053-7.

    Article  CAS  Google Scholar 

  • Nair, N.V., A. Selvi, T.V. Sreenivasan, et al. 2005. Molecular diversity among Saccharum, Erianthus, Sorghum, Zea and their hybrids. Sugar Tech 7: 55–59. https://doi.org/10.1007/BF02942418.

    Article  CAS  Google Scholar 

  • Nair, N.V., A. Selvi, T.V. Sreenivasan, K.N. Pushpalatha, and S. Mary. 2006. Characterization of inter-generic hybrids of Saccharum using molecular Markers. Genetics Resources and Crop Evolution 53: 163–169.

    CAS  Google Scholar 

  • Nair, N.V., and S. Mary Sheji. 2006. RAPD analysis reveals the presence of mainland Indian and Indonesian forms of Erianthus arundinaceus (Retz.) Jeswiet in the Andaman-Nicobar Islands. Current Science 90 (8): 1118–1122.

    Google Scholar 

  • Nair, N.V., V.A. Amalraj, R. Balakrishnan., A.W. Jebadhas, K.G. Somarajan, C. Jayabose, A.K. Rema Devi, M. Vigneswaran, and S. Sekharan. 2014. A catalogue on Saccharaum germplasm collection (NATP), 171. Coimbatore: ICAR-Sugarcane Breeding Institute. ISBN 978-81-926387-6-8.

  • Nayak, S.N., J. Song, A. Villa, B. Pathak, T. Ayala-Silva, X. Yang, J. Todd, N.C. Glynn, D.N. Kuhn, B. Glaz, R.A. Gilbert, J.C. Comstock, and J. Wang. 2014. Promoting Utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS ONE 9: 1–12.

    Google Scholar 

  • Nuss, K.J. 1974. Parental performance of certain sugarcane varieties. In: Proceedings of the South African Sugar Technologists’ Association, April, 1974.

  • Pachakkil, B., Y. Terajima, N. Ohmido, M. Ebina, S. Irei, H. Hayashi, and H. Takagi. 2019. Cytogenetic and agronomic characterization of inter-generic hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Scientific Reports 9 (1): 1748. https://doi.org/10.1038/s41598-018-38316-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panje, R.R. 1951. Preliminary note on the Saccharum spontaneum collection work in progress at Sugarcane breeding Station, Coimbatore. Proceedings of Bienniel Conference, Sugarcane Research and Development Workers, Coimbatore 1: 10–19.

    Google Scholar 

  • Panje, R.R. 1957. Studies in Saccharum spontaneum in tropical and subtropical Asia and Africa. Indian Journal of Sugarcane Research and Development 1 (1): 61–64.

    Google Scholar 

  • Panje, R.R., and C.N. Babu. 1960. Studies on Saccharum spontaneum-distribution and geographical association of chromosome numbers. Cytologia 25: 152–172.

    Google Scholar 

  • Piperidis, N., J.W. Chen, H. Deng, L.P. Wang, P. Jackson, and G. Piperidis. 2010. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane inter-generic hybrids. Genome 53: 331–336. https://doi.org/10.1139/g10-010.

    Article  CAS  PubMed  Google Scholar 

  • Pompidor, N., C. Charron, C. Hervouet, S. Bocs, G. Droc, R. Rivallan, A. Manez, T. Mitros, K. Swaminathan, J.C. Glaszmann, O. Garsmeur, and A. D’Hont. 2021. Three founding ancestral genomes involved in the origin of sugarcane. Annals of Botany 127: 827–840.

    PubMed  PubMed Central  Google Scholar 

  • Premachandran, M.N., R. Viola, R. Lalitha, M. Lekshmi, and A.K. Remadevi. 2011. Saccharum spontaneum as a bridge species for introgression of Erianthus arundinaceus and E. bengalense traits to sugarcane. In Proceedings of the international sugar conference IS 2011, Balancing sugar and energy production in developing countries: Sustainable technologies and marketing technologies, 521–526, New Delhi.

  • Price, S. 1957. Cytological studies in Saccharum and allied genera. II. Geographic distribution and chromosome numbers in S. robustum. Cytologia 22: 40–52.

    Google Scholar 

  • Price, S. 1967. Interspecific hybridization in sugarcane Breeding. Proceedings of International Society of Sugar Cane Technologists 12: 1021–1026.

    Google Scholar 

  • Qi, Y.W., H.H. Deng, and Q.W. Li. 2012. Advance in utilization of sugarcane germplasm in China mainland. Crop Research 26 (5): 443–446 (in Chinese).

    Google Scholar 

  • Qi, Y., X. Gao, Q. Zeng, Z. Zheng, C. Wu, R. Yang, X. Feng, Z. Wu, L. Fan, and Z. Huang. 2021. Sugarcane breeding, Germplasm development and related molecular research in China. Sugar Tech 1: 21. https://doi.org/10.1007/s12355-021-01556.

    Article  Google Scholar 

  • Raj, P., A. Selvi, P.T. Prathima, and N.V. Nair. 2016. Analysis of genetic diversity of Saccharum complex using chloroplast microsatellite markers. Sugar Tech 18: 141–148.

    CAS  Google Scholar 

  • Ram, B., and S. Kumar. 2007. Screening of sugarcane clones for abiotic stresses under subtropical conditions. In Platinum jubilee Souvenir, 20–24, eds. Bakshi ram and N.V. Nair. Sugarcane Breeding Institute Regional centre Karnal.

  • Ram, B., and G. Hemaprabha. 1990. Variability pattern in cultivar x species progenies in sugarcane. Indian Journal of Genetics and Plant Breeding 50: 400–406.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1991a. Genetic divergence in some flowering clones of S. barberi and S. sinense. Indian Journal of Plant Genetic Resources 4: 40–44.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1991b. Character inter-relationships in cultivar x species progenies in sugarcane. Indian Journal of Genetics and Plant Breeding 51: 89–95.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1992. Genetic variability in inter-specific progenies in sugarcane (Saccharum spp.). Indian Journal of Genetics and Plant Breeding 52: 192–198.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1995. Influence of noble and commercial hybrid clones on economic traits in nobilization of Saccharum species. Indian Journal of Genetics and Plant Breeding 55: 166–169.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1997. Correlation and path analysis in inter-specific progenies in sugarcane (Saccharum spp.). Indian Journal of Agricultural Research 31 (1): 23–27.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 1998. Nature and pattern of genetic divergence of sugar yield and its components in progenies of Saccharum robustum. Sugar Cane 2: 7–9.

    Google Scholar 

  • Ram, B., and G. Hemaprabha. 2005. Genetic divergence of sugar yield and its components in flowering type Saccharum officinarum clones. Agricultural Science Digest 25 (2): 118–120.

    Google Scholar 

  • Ram, B., T.V. Sreenivasan, B.K. Sahi, and N. Singh. 2001. Introgression of low temperature tolerance and red rot resistance from Erianthus in sugarcane. Euphytica 122: 145–153.

    Google Scholar 

  • Rao, G.P., R.K. Gaur, M. Singh, et al. 2000. Occurrence of sugarcane yellow leaf virus in India. Sugar Tech 2: 37–38. https://doi.org/10.1007/BF02995586.

    Article  Google Scholar 

  • Roach, B.T. 1977. Utilisation of Saccharum spontaneum in sugarcane breeding. Proceedings of International Society of Sugar Cane Technologists 16: 43–58.

    Google Scholar 

  • Roach, B.T. 1984. Conservation and use of the genetic resources of sugarcane. Sugar Cane 2: 7–11.

    Google Scholar 

  • Roach, B.T. 1986. Evaluation and use of sugarcane germplasm. Proceedings of International Society of Sugar Cane Technologists 1: 492–503.

    Google Scholar 

  • Roach, B.T. 1989. Origin and improvement of the genetic base of sugarcane. In Proceedings of the Australian Society of sugar cane technologists, Brisbane, 35–47.

  • Schnell, R.J., P.Y.P. Tai, L.E. Griffin, and J.D. Miller. 1997. The world collection of sugarcane and related grasses. History and current status of the germplasm collection maintained in Miami, Florida, USA. Sugarcane 5: 15–17.

    Google Scholar 

  • Selvi, A., N.V. Nair, N. Balasundaram, and T. Mohapatra. 2003. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46: 394–403.

    CAS  PubMed  Google Scholar 

  • Selvi, A., N.V. Nair, J.L. Noyer, N.K. Singh, N. Balasundaram, K.C. Bansal, K.R. Koundal, and T. Mohapatra. 2006. AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genetic Resources and Crop Evolution 53: 831–842.

    CAS  Google Scholar 

  • Sobhakumari, V.P. 2013. New determinations of somatic chromosome number in cultivated and wild species of Saccharum. Caryologia 66: 268–274.

    Google Scholar 

  • Sreenivasan, T. V., B.S., Ahloowalia, and D.J. Heinz. 1987. Cytogenetics, Chapter 5 In Sugarcane improvement through breeding. (Ed. by Heinz, D.J., 1987): Inter-specific Saccharum hybrids: 223.

  • Sreenivasan, K., and M.G.B.R. Batcha. 1962. Performance of clones of Saccharum species and allied genera unde conditions of water logging. Proceedings of International Society of Sugar Cane Technologists 11: 571–578.

    Google Scholar 

  • Sreenivasan, T.V., and N.V. Nair. 1991. Catalogue of sugarcane genetic resources vol. 3(5) Saccharum officinarum. Coimbatore: Sugarcane Breeding Institute.

  • Sreenivasan, T.V., V.A. Amalraj, and A.W. Jebadhas. 2001. Catalogue on sugarcane genetic resources V. Saccharum spontaneum L. Coimbatore: Springer.

    Google Scholar 

  • Sookasthan, K., S. Nagatomi, K. Naritoom, and J. Sadakorn. 1992. Saccharum germplasm collected in Thailand and its significance. Proceedings of International Society of Sugar Cane Technologists 21: 324–336.

    Google Scholar 

  • Tai, P.Y.P., and J.D. Miller. 1986. Genotype x environment interaction for cold tolerance in sugarcane. Proceedings of International Society of Sugar Cane Technologists 1: 454–462.

    Google Scholar 

  • Tanksley, S.D., and S.R. McCouch. 1997. Seed Banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

    CAS  PubMed  Google Scholar 

  • Terajima, Y., M. Matusoka, S. Irei, T. Sakaigaichi, S. Fukuhara, K. Ujihara, S. Ohara, and A. Sugimoto. 2007. Breeding for high biomass sugarcane and its utilization in Japan. Proceedings of International Society of Sugar Cane Technologists 26: 759–763.

    Google Scholar 

  • Venkatraman, T.S. 1937. Comparative study of certain morphological characters of sugarcane x Sorghum hybrids. Indian Journal of Agricultural Sciences 6 (4): 996–997.

    Google Scholar 

  • Walker, D.I.T. 1987. Manipulating the genetic base of sugarcane. In Proceedings of Copersucar’s international sugarcane workshop, Sao Polo. Brazil, 321–334.

  • Walker, D.I.T. 1974. Utilisation of noble and S. spontaneum germplasm in the West Indies. Proceedings of the International Society of Sugar Cane Technologists 14: 224–232.

    Google Scholar 

  • Wang, L., P.A. Jackson, and X. Lu. 2008. Evaluation of sugarcane x Saccharum spontaneum progeny for biomass composition and yield components. Crop Science 48 (3): 951–961.

    Google Scholar 

  • Welker, C.A.D., T.T. Souza-Chies, H.M. Longhi-Wagner, M.C. Peichoto, M.R. McKain, and E.A. Kellogg. 2015. Phylogenetic analysis of Saccharum s.l. (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species. American journal of Botany 102: 248–263.

    PubMed  Google Scholar 

  • White, W.H., Anna L. Hale, John C. Veremis, Thomas L. Tew, and Edward P. Richard Jr. 2011. Registration of Two Sugarcane Germplasm Clones with Antibiosis to the Sugarcane Borer (Lepidoptera: Crambidae). Journal of Plant Registrations 5: 248–253.

    Google Scholar 

  • Wu, J., Y. Huang, Y. Lin, C. Fu, S. Liu, Z. Deng, Q. Li, Z. Huang, R. Chen, and M. Zhang. 2014. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the inter-generic progeny between Saccharum spp. and Erianthus arundinaceus. PLoS ONE 9 (10): e110390.

    PubMed  PubMed Central  Google Scholar 

  • Wu, Z.Y., and P.H. Raven. 1994. Flora of China (English edition), vol 22, 571, 576, 589, Saccharum arundinaceum. http://www.efloras.org/florataxon.aspx.lora_id=2&taxon_id=200026230

  • Yang, S., X. Li, F. Huang, Y. Huang, X. Li, Q. Wang, Z. Deng, R. Chen, and M. Zhang. 2018a. A new method based on SNP of nrDNA-ITS to identify Saccharum spontaneum and its progeny in the genus Saccharum. PLoS ONE 13: e0197458. https://doi.org/10.1371/journal.pone.0197458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., J. Song, J. Todd, Z. Peng, D. Paudel, Z. Luo, X. Ma, Q. You, E. Hanson, Z. Zhao, Y. Zhao, J. Zhang, R. Ming, and J. Wang. 2018b. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’ crop with ‘bitter’ genomes. Plant Biotechnology Journal 17: 488–498. https://doi.org/10.1111/pbi.12992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Q. Zhang, L. Li, H. Tang, and R. Ming. 2019. Recent polyploidization events in three Saccharum founding species. Plant Biotechnology Journal 17: 264–274.

    CAS  PubMed  Google Scholar 

  • Zhou, M. 2013. Conventional sugarcane breeding in South Africa: Progress and future prospects. American Journal of Plant Sciences 4: 189–197.

    Google Scholar 

  • Zhou, S., Y.J. Gao, B.Q. Zhang, Y.X. Huang, W.X. Duan, C.F. Yang, Z.P. Wang, and G.M. Zhang. 2019. Genetic analysis of wild specific genetic loci in the hybridization process for inter-generic hybrid complex (Erianthus arundinaceus x Saccharum spontaneum). Journal of Plant Genetic Resources 20 (3): 718–727 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hemaprabha.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Consent to Participate

All authors have participated in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemaprabha, G., Mohanraj, K., Jackson, P.A. et al. Sugarcane Genetic Diversity and Major Germplasm Collections. Sugar Tech 24, 279–297 (2022). https://doi.org/10.1007/s12355-021-01084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01084-1

Keywords

Navigation