Skip to main content
Log in

Signatures of positive selection in the mitochondrial genome of neotropical freshwater stingrays provide clues about the transition from saltwater to freshwater environment

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Neotropical freshwater stingrays (subfamily Potamotrygoninae) are carnivorous bottom feeder batoids widely distributed in most river basins of South America. They represent the unique extant group of elasmobranchs that evolved to live exclusively in freshwater environments. These species are exploited either by commercial fisheries (e.g., for food or ornamental industry) or by indigenous communities allocated along with their natural range. Restrictive life history characteristics coupled with habitat degradation make Potamotrygoninae species highly vulnerable to human impacts and highlight the necessity of studies to inform basic biological aspects, from ecology to genetics, to guide their conservation and clarify the molecular basis of adaptation to the freshwater environment. We used available and newly assembled Potamotrygon spp. mitogenomes to perform a comparative investigation of their molecular evolution. A phylogenetic estimation using the mitogenome of Potamotrygon falkneri and other Elasmobranchii supports monophyly for Potamotrygonidae and indicates a close relationship to Dasyatidae. A synteny analysis comprising 3 Potamotrygon and other 51 batoids revealed a highly conserved mitogenomic context. We detected various amino acid sites under positive selection exclusively in Potamotrygon spp., within the sequences of ND4, ND5, ND6, and COXII genes. Positively selected mutational events in key genes of energetic metabolism may be related to the physiological adaptation of Potamotrygon spp. during the ancient incursion into freshwater. This broad comparative mitogenomic study provides novel insights into the evolutionary history of neotropical freshwater stingrays and their relatives and stands out as a valuable resource to aid in current and future research on elasmobranch molecular evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The mitogenome of P. falkneri is available at NCBI GenBank database under the accession number MZ203140. The RNA-seq dataset used to assemble the mitogenome of P. falkneri is available at NCBI SRA database under the accession number SRR14546100.

References

  • Albert JS, Lovejoy NR, Crampton WG (2006) Miocene tectonism and the separation of cis-and trans-Andean river basins: evidence from neotropical fishes. J S Am Earth Sci 21(1–2):14–27

    Article  Google Scholar 

  • Albert JS, Val P, Hoorn C (2018) The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyology 16(3):e180033

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Aschliman NC, Claeson KM, McEachran JD (2012) Phylogeny of batoidea. Biol Sharks Their Relat 2:57–95

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA, USA

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13(4):729–744

    Article  Google Scholar 

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780

    Article  Google Scholar 

  • Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8(6):668–674

    Article  Google Scholar 

  • Caballero S, Duchêne S, Garavito MF, Slikas B, Baker CS (2015) Initial evidence for adaptive selection on the NADH subunit two of freshwater dolphins by analyses of mitochondrial genomes. PLoS ONE 10(5):e0123543

    Article  Google Scholar 

  • Carvalho MD (2016) Potamotrygon rex, a new species of Neotropical freshwater stingray (Chondrichthyes: Potamotrygonidae) from the middle and upper rio Tocantins, Brazil, closely allied to Potamotrygon henlei (Castelnau, 1855). Zootaxa 4150(5):537–565

    Article  Google Scholar 

  • Carvalho MD, Lovejoy NR (2011) Morphology and phylogenetic relationships of a remarkable new genus and two new species of Neotropical freshwater stingrays from the Amazon basin (Chondrichthyes: Potamotrygonidae). Zootaxa 2776(1):13–48

    Article  Google Scholar 

  • Carvalho MR, Maisey JG, Grande L (2004) Freshwater stingrays of the green river formation of wyoming (Early Eocene), with the description of a new genus and species and an analysis of its phylogenetic relationships (Chondrichthyes: Myliobatiformes). Bull Am Mus Nat Hist 2004(284):1–136

    Article  Google Scholar 

  • Carvalho MD, Perez MHS, Lovejoy NR (2011) Potamotrygon tigrina, a new species of freshwater stingray from the upper Amazon basin, closely related to Potamotrygon schroederi Fernandez-Yépez, 1958 (Chondrichthyes: Potamotrygonidae). Zootaxa 2827(1):1–30

    Article  Google Scholar 

  • Carvalho MD, Loboda TS, Silva JPCB (2016) A new subfamily, Styracurinae and new genus, Styracura, for Himantura schmardae (Werner, 1904) and Himantura pacifica (Bebbe & Tee-Van, 1941) (Chondrichthyes: Myliobatiformes). Zootaxa 4175(3):201–221

    Article  Google Scholar 

  • Carvalho MD, Lovejoy NR, Rosa RS. (2003) Family Potamotrygonidae (river stingrays). Check list of the freshwater fishes of South and Central America, 22–28

  • Clarke CR, Karl SA, Horn RL, Bernard AM, Lea JS, Hazin FH, Shivji MS (2015) Global mitochondrial DNA phylogeography and population structure of the silky shark Carcharhinus falciformis. Marine Biol 162(5):945–955

    Article  Google Scholar 

  • Consuegra S, John E, Verspoor E, de Leaniz CG (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 47(1):1–10

    Article  Google Scholar 

  • Cruz VP, Mendes NJ, Pardo BG, Vera M, Martinez P, Oliveira C, Foresti F (2013) Development of microsatellite markers by highthroughput pyrosequencing in the freshwater stingray (Potamotrygon motoro) and cross-species amplification. Mol Ecol Res 13:546–549

    Google Scholar 

  • Cruz VP, Vera M, Mendonça FF, Pardo BG, Martinez P, Oliveira C, Foresti F (2015) First identification of interspecies hybridization in the freshwater stingrays Potamotrygon motoro and P. falkneri (Myliobatiformes, Potamotrygonidae). Conserv Genetics 16(1):241–245

    Article  Google Scholar 

  • Da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9(1):1–22

    Article  Google Scholar 

  • Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, Meyer M (2013) Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci 110(39):15758–15763

    Article  Google Scholar 

  • De Grassi A, Caggese C, D’Elia D, Lanave C, Pesole G, Saccone C (2005) Evolution of nuclearly encoded mitochondrial genes in Metazoa. Gene 354:181–188

    Article  Google Scholar 

  • De Souza ÉMS, Freitas L, da Silva Ramos EK, Selleghin-Veiga G, Rachid-Ribeiro MC, Silva FA, Nery MF (2021) The evolutionary history of manatees told by their mitogenomes. Sci Rep 11(1):1–10

    Article  Google Scholar 

  • Finch TM, Zhao N, Korkin D, Frederick KH, Eggert LS (2014) Evidence of positive selection in mitochondrial complexes I and V of the African elephant. PLoS ONE 9(4):e92587

    Article  Google Scholar 

  • Fontenelle JP, Loboda TS, Kolmann MA, Carvalho MR (2017) Angular cartilages structure and variation in Neotropical freshwater stingrays (Chondrichthyes: Myliobatiformes: Potamotrygonidae), with comments on their function and evolution. Zool J Linn Soc 183:121–142

    Article  Google Scholar 

  • Fontenelle JP, Lovejoy NR, Kolmann MA, Marques FPL (2021a) Molecular phylogeny for the Neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals limitations of traditional taxonomy. Biol J Lin Soc 134(2):381–401

    Article  Google Scholar 

  • Fontenelle JP, Marques FPL, Kolmann MA, Lovejoy NR (2021b) Biogeography of the neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continent-scale paleogeographic change and drainage evolution. J Biogeogr 48:1406–1419

    Article  Google Scholar 

  • Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, da Fonseca RR (2011) Positive selection on the killer whale mitogenome. Biol Lett 7(1):116–118

    Article  Google Scholar 

  • Frederico RG, Farias IP, Araújo MLGD, Charvet-Almeida P, Alves-Gomes JA (2012) Phylogeography and conservation genetics of the Amazonian freshwater stingray Paratrygon aiereba Müller & Henle, 1841 (Chondrichthyes: Potamotrygonidae). Neotropical Ichthyol 10(1):71–80

    Article  Google Scholar 

  • Garcia DA, Lasso CA, Morales M, Caballero SJ (2016) Molecular systematics of the freshwater stingrays (myliobatiformes: potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia–Venezuela): evidence from three mitochondrial genes. Mitochondrial DNA Part A 27(6):4479–4491

    Article  Google Scholar 

  • Garrone-Neto D, Haddad Junior V (2010) Stingrays in rivers in southeastern Brazil: occurrence localities and impact on the population. Rev Soc Bras Med Trop 43(1):82–88

    Google Scholar 

  • Garrone-Neto D, Haddad V Jr, Vilela MJA, Uieda VS (2007) Registro de ocorrência de duas espécies de potamotrigonídeos na região do Alto Rio Paraná e algumas considerações sobre sua biologia. Biota Neotrop 7(1):205–208

    Article  Google Scholar 

  • Garvin MR, Bielawski JP, Gharrett AJ (2011) Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon. PLoS ONE 6(9):e24127

    Article  Google Scholar 

  • Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21(4):204–224

    Article  Google Scholar 

  • Havird JC, Whitehill NS, Snow CD, Sloan DB (2015) Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 69(12):3069–3081

    Article  Google Scholar 

  • Hernansanz-Agustín P, Enríquez JA (2021) Generation of reactive oxygen species by mitochondria. Antioxidants 10(3):415

    Article  Google Scholar 

  • Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics, vol 23. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35(2):518–522

    Article  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589

    Article  Google Scholar 

  • Kirchhoff KN, Hauffe T, Stelbrink B, Albrecht C, Wilke T (2017) Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays. J Evol Biol 30(2017):1576–1591

    Article  Google Scholar 

  • Pond SLK, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222

    Article  Google Scholar 

  • Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, Pavlova A (2018) Climate-driven mitochondrial selection: a test in Australian songbirds. Mol Ecol 27(4):898–918

    Article  Google Scholar 

  • Lasso CA, Sánchez-Duarte P, Sierra CMR, Grijalba-Bendeck M, Ortiz-Arroyave LM, Ramos-Socha HB. (2014a) Potamotrygon magdalenae. pp. 195–206. In: Lasso CA, de Rosa RS, Sánchez-Duarte P, Morales-Betancourt MA, Agudelo-Córdoba E (Eds). IX. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte I. Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam y Guayana Francesa: diversidad, bioecología, uso y conservación. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia

  • Lasso CA, Lasso-Alcalá OM, Sánchez-Duarte P, Ortiz-Arroyave LM, Ortega-Lara A, Silva JPCB, Loboda TS, Fontenelle JP. (2014b) Potamotrygon yepezi. pp. 267–273. In: Lasso CA, de Rosa RS, Sánchez-Duarte P, Morales-Betancourt MA, Agudelo-Córdoba E (Eds). IX. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte I. Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam y Guayana Francesa: diversidad, bioecología, uso y conservación. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D.C., Colombia

  • Liu Y, Li H, Song F, Zhao Y, Wilson JJ, Cai W (2019) Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Syst Entomol 44(4):810–819

    Article  Google Scholar 

  • Loboda TS. (2010) Revisão taxonômica e morfológica de Potamotrygon motoro (Müller & Henle, 1841) na bacia Amazônica (Chondrichthyes: Myliobatiformes: Potamotrygonidae) (Doctoral dissertation, Universidade de São Paulo)

  • Loboda TS, Carvalho MR (2013) Systematic revision of the Potamotrygon motoro (Müller & Henle, 1841) species complex in the Parana-Paraguay basin, with description of two new ocellated species (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyol 11(4):693–737

    Article  Google Scholar 

  • Lovejoy NR (1996) Systematics of myliobatoid elasmobranchs: with emphasis on the phylogeny and historical biogeography of neotropical freshwater stingrays (Potamotrygonidae: Rajiformes). Zool J Linn Soc 117(3):207–257

    Article  Google Scholar 

  • Macey JR, Pabinger S, Barbieri CG, Buring ES, Gonzalez VL, Mulcahy DG, Gemmell NJ (2021) Evidence of two deeply divergent co-existing mitochondrial genomes in the Tuatara reveals an extremely complex genomic organization. Commun Biol 4(1):1–10

    Article  Google Scholar 

  • Martin RA (2005) Conservation of freshwater and euryhaline elasmobranchs: a review. J Mar Biol Assoc UK 85:1049–1073

    Article  Google Scholar 

  • Mason AJ, Grazziotin FG, Zaher H, Lemmon AR, Moriarty Lemmon E, Parkinson CL (2019) Reticulate evolution in nuclear Middle America causes discordance in the phylogeny of palm-pitvipers (Viperidae: Bothriechis). J Biogeogr 46(5):833–844

    Article  Google Scholar 

  • Melton T, Holland C, Holland M (2012) Forensic mitochondria DNA analysis: current practice and future potential. Forensic Sci Rev 24(2):101

    Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    Article  Google Scholar 

  • Moreno-Loshuertos R, Acin-Perez R, Fernández-Silva P, Movilla N, Pérez-Martos A, de Cordoba SR, Enriquez JA (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38(11):1261–1268

    Article  Google Scholar 

  • Nachtigall PG, Grazziotin FG, Junqueira-de-Azevedo IL (2021) MITGARD: an automated pipeline for mitochondrial genome assembly in eukaryotic species using RNA-seq data. Brief Bioinform 22(5):bbaa429

    Article  Google Scholar 

  • Naylor GJ, Caira JN, Jensen K, Rosana KA, Straube N, Lakner C (2012) Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. Biol Sharks Their Relat 2:31–56

    Article  Google Scholar 

  • Naylor GJP, Yang L, Corrigan S, Carvalho, MD. (2016) Phylogeny and classification of rays. Rays of the World, 10–15

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  Google Scholar 

  • Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5):728–742

    Article  Google Scholar 

  • Noll D, Leon F, Brandt D, Pistorius P, Le Bohec C, Bonadonna F, Trathan PN, Barbosa A, Rey AR, Dantas GP, Bowie RC (2022) Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci Rep 12(1):1–3

    Article  Google Scholar 

  • Ory D, Cuenot Y, Vigouroux R, Covain R, Brosse S, Murienne J (2019) Complete mitochondrial genome of the river stingray Potamotrygon orbignyi (Myliobatiformes: Potamotrygonidae). Mitochondrial DNA Part B 4(2):3153–3154

    Article  Google Scholar 

  • Papa S, Martino PL, Capitanio G, Gaballo A, Rasmo DD, Signorile A, Petruzzella V (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Mitochondrial Med 942:3–37

    Article  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  Google Scholar 

  • Pinhal D, Yoshimura TS, Araki CS, Martins C (2011) The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 11(1):1–14

    Article  Google Scholar 

  • Romero PE, Weigand AM, Pfenninger M (2016) Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evol Biol 16(1):164

    Article  Google Scholar 

  • Rosa RDS. (1985) A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)

  • Rozewicki J, Li S, Amada KM, Standley DM, Katoh K (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 47(W1):W5–W10

    Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033

    Article  Google Scholar 

  • Sanches D, Martins T, Lutz I, Veneza I, Silva R, Araújo F, Muriel-Cunha J, Sampaio I, Garcia M, Sousa L, Evangelista-Gomes G (2021) Mitochondrial DNA suggests hybridization in freshwater stingrays Potamotrygon (Potamotrygonidae: Myliobatiformes) from the Xingu river, Amazonia and reveals speciation in Paratrygon aiereba. An Acad Bras Ciênc 93(3):e20191325

    Article  Google Scholar 

  • Sebastian W, Sukumaran S, Gopalakrishnan A (2022) Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity 128(4):236–249

    Article  Google Scholar 

  • Shtolz N, Mishmar D (2019) The mitochondrial genome–on selective constraints and signatures at the organism, cell, and single mitochondrion levels. Front Ecol Evol 7:342

    Article  Google Scholar 

  • Silva JPCB, Carvalho MR (2011a) A taxonomic and morphological redescription of Potamotrygon falkneri Castex & Maciel, 1963 (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyology 9:209–232

    Article  Google Scholar 

  • Silva JPCB, Carvalho MR (2011b) A new species of Neotropical freshwater stingray of the genus Potamotrygon Garman, 1877 from the Río Madrede Díos, Peru (Chondrichthyes: Potamotrygonidae). Papéis Avulsos De Zoologia 51(8):139–154

    Article  Google Scholar 

  • Silva JPCB, Carvalho MR (2015) Systematics and morphology of Potamotrygon orbignyi (Castelnau, 1855) and allied forms (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Zootaxa 3982(1):1–82

    Article  Google Scholar 

  • Silva JPCB, Loboda TS (2019) Potamotrygon marquesi, a new species of neotropical freshwater stingray (Potamotrygonidae) from the Brazilian Amazon Basin. J Fish Biol 95(2):594–612

    Article  Google Scholar 

  • Slimen HB, Schaschl H, Knauer F, Suchentrunk F (2017) Selection on the mitochondrial ATP synthase 6 and the NADH dehydrogenase 2 genes in hares (Lepus capensis L., 1758) from a steep ecological gradient in North Africa. BMC Evolut Biol 17(1):1–16

    Google Scholar 

  • Song HM, Mu XD, Wei MX, Wang XJ, Luo JR, Hu YC (2015) Complete mitochondrial genome of the ocellate river stingray (Potamotrygon motoro). Mitochondrial DNA 26(6):857–858

    Article  Google Scholar 

  • Teacher AG, André C, Merilä J, Wheat CW (2012) Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol Biol 12(1):1–14

    Article  Google Scholar 

  • Thorson TB, Langhammer JK, Oetinger MI (1983) Reproduction and development of the South American freshwater stingrays, Potamotrygon circularis and P. motoro. Env Biol Fishes 9(1):3–24

    Article  Google Scholar 

  • Toffoli D, Hrbek T, Araújo MLGD, Almeida MPD, Charvet-Almeida P, Farias IP (2008) A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genet Mol Biol 31(1):324–336

    Article  Google Scholar 

  • Tomasco IH, Lessa EP (2011) The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection. Mol Phylogenet Evol 61(1):64–70

    Article  Google Scholar 

  • Tomasco IH, Lessa EP (2014) Two mitochondrial genes under episodic positive selection in subterranean octodontoid rodents. Gene 534(2):371–378

    Article  Google Scholar 

  • Valentim FCDS, Porto JIR, Feldberg E (2019) Chromosomal characterization of Amazonian freshwater stingrays with evidence for new karyomorphs and XX/XY sex chromosomes. Genet Mol Biol 42(3):578–593

    Article  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  Google Scholar 

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35(3):773–777

    Article  Google Scholar 

  • Wetzel RG. (2001) Limnology: lake and river ecosystems. Gulf Professional Publishing

  • Xia JH, Li HL, Zhang Y, Meng ZN, Lin HR (2018) Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes. Mitochondrial DNA Part A 29(4):511–524

    Article  Google Scholar 

  • Yu L, Wang X, Ting N, Zhang Y (2011) Mitogenomic analysis of Chinese snub-nosed monkeys: evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 11(3):497–503

    Article  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30(5):614–620

    Article  Google Scholar 

  • Zinner D, Groeneveld LF, Keller C, Roos C (2009) Mitochondrial phylogeography of baboons (Papio spp.)–indication for introgressive hybridization? BMC Evolut Biol 9(1):1–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Carlos T. Moraes for precious discussion, Helder E. da Silva for support during field work and Domingos Garrone-Neto for the P. falkneri picture used in Fig. 1.

Funding

This work received support from ProPe-UNESP (First Projects Special Program) and São Paulo Research Foundation (FAPESP) (grants 2012/02540-0 and 2013/06864-7). DP is recipient of CNPq productivity scholarship (315139/2020-0).

Author information

Authors and Affiliations

Authors

Contributions

PGN and DP conceived and designed the experiments. DP collected and processed samples and provided reagents and financial resources. PGN performed all bioinformatics analysis. TSL reviewed the taxonomy of Batoidea species. PGN and TSL wrote the manuscript draft. PGN, TSL, and DP critically edited the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Pinhal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The specimens of P. falkneri used in the present study were handled and collected in accordance with the guidelines of the Brazilian College for Animal Experimentation (COBEA; http://www.sbcal.org.br/), the Ethics Committee in Animal Use (CEUA) of UNESP, and recorded in the Genetic Heritage Management Council system (SisGen/CGen/MMA; access number 5936E9).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Joan Cerdá.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 52 KB)

Supplementary file2 (ZIP 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachtigall, P.G., Loboda, T.S. & Pinhal, D. Signatures of positive selection in the mitochondrial genome of neotropical freshwater stingrays provide clues about the transition from saltwater to freshwater environment. Mol Genet Genomics 298, 229–241 (2023). https://doi.org/10.1007/s00438-022-01977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01977-0

Keywords

Navigation