Skip to main content
Log in

A meta-analysis of different von Hippel Lindau mutations: are they related to retinal capillary hemangioblastoma?

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Retinal capillary hemangioblastomas (RCH) is a benign tumor that represents the initial manifestation in roughly half of Von Hippel Lindau (VHL) patients. They may also occur sporadically without systemic involvement. A first meta-analysis study was investigated to estimate the prevalence of Retinal capillary hemangioblastoma (RCH) in Von Hippel Lindau (VHL) syndrome, and its relation to type and location of mutations in VHL gene. The electronic databases of PubMed, Scopus, Embase, and Google Scholar were utilized to find eligible papers published up to May 2020. Lastly, after the different prevalence of RCH in Europe compared to other continents was noted, we decided to consider European and non-European patients separately. The Random effect model was used to evaluate the relation between developing RCH and types of mutations. The overall prevalence of RCH among VHL patients is about 47%. The prevalence of RCH was significantly higher in Europe in comparison with non-Europeans (p value < 0.001). Overall, the differences between the prevalence of RCH among different mutation types were not statistically significant. However, in Europe, the prevalence of RCH was significantly higher in patients with truncation mutation (p value = 0.007). In Europe, the RCH in VHL patients who had a mutation in exon 2 was significantly lower in comparison with exon 1 (p value = 0.001); but in non-Europeans, the prevalence of RCH in VHL patients that involved exon 2 was significantly higher in comparison with VHL patients with a mutation in exon1 (p value = 0.012). The highest risk of developing RCH was reported among Europeans. Overall, this study showed that the prevalence of RCH in VHL syndrome is not related to type or location of mutations and difference of RCH prevalence is probably depends on other genetic or environmental factor that should be considered in subsequent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chacon-Camacho OF, Rodriguez-Dennen F, Camacho-Molina A, Rasmussen A, Alonso-Vilatela E, Zenteno JC (2010) Clinical and molecular features of familial and sporadic cases of von Hippel-Lindau disease from Mexico. Clin Exp Ophthalmol 38(3):277–283

    Article  PubMed  Google Scholar 

  • Chen F, Kishida T, Yao M, Hustad T, Glavac D, Dean M, Gnarra JR, Orcutt ML, Duh FM, Glenn G, Green J (1995) Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 5(1):66–75

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Geng W, Zhao Y, Zhao H, Wang G, Huang F, Liu F, Geng X (2013) Clinical and mutation analysis of four Chinese families with von Hippel-Lindau disease. Clin Transl Oncol 15(5):391–397

    Article  PubMed  CAS  Google Scholar 

  • Chew EY (2005) Ocular manifestations of von Hippel-Lindau disease: clinical and genetic investigations. Trans Am Ophthalmol Soc 103:495–511

    PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Ki CS, Kim JW (2009) Improved detection of germline mutations in Korean VHL patients by multiple ligation-dependent probe amplification analysis. J Korean Med Sci 24(1):77–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choo D, Shotland L, Mastroianni M, Glenn G, van Waes C, Linehan WM, Oldfield EH (2004) Endolymphatic sac tumors in von Hippel—Lindau disease. J Neurosurg 100(3):480–487

    Article  PubMed  Google Scholar 

  • Crona J, Nordling M, Maharjan R, Granberg D, Stålberg P, Hellman P, Björklund P (2014) Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours. PLoS ONE 9(1):e86756

    Article  PubMed  PubMed Central  Google Scholar 

  • Cybulski C, Krzystolik K, Murgia A, Gorski B, Dębniak T, Jakubowska A, Martella M, Kurzawski G, Prost M, Kojder I, Limon J (2002) Germline mutations in the von Hippel-Lindau (VHL) gene in patients from Poland: disease presentation in patients with deletions of the entire VHL gene. J Med Genet 39(7):e38–e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decker J, Neuhaus C, Macdonald F, Brauch H, Maher ER (2014) Clinical utility gene card for: von Hippel-Lindau (VHL). Eur J Hum Genet 22(4):572–572. https://doi.org/10.1038/ejhg.2013.180

    Article  CAS  Google Scholar 

  • Dollfus H, Massin P, Taupin P, Nemeth C, Amara S, Giraud S, Béroud C, Dureau P, Gaudric A, Landais P, Richard S (2002) Retinal hemangioblastoma in von Hippel-Lindau disease: a clinical and molecular study. Invest Ophthalmol vis Sci 43(9):3067–3074

    PubMed  Google Scholar 

  • Fagundes GF, Petenuci J, Lourenco DM Jr, Trarbach EB, Pereira MA, Correa D’Eur JE, Hoff AO, Lerario AM, Zerbini MC, Siqueira S, Yamauchi F (2019) New insights into pheochromocytoma surveillance of young patients with VHL missense mutations. J Endocr Soc 9:1682–1692

    Article  Google Scholar 

  • Faiyaz-Ul-Haque M, Jamil M, Aslam M, Abalkhail H, Al-Dayel F, Basit S, Nawaz Z, Zaidi SH (2020) Novel and recurrent germline mutations in the VHL gene in 5 Arab patients with Von Hippel-Lindau disease. Cancer Genet 243:1–6

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J (1999) Formation of the VHL–elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 4(6):1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Fitzmaurice GM, Laird NM, Ware JH (2012) Applied longitudinal analysis, vol 998. Wiley, Hoboken

    Google Scholar 

  • Glavač D, Neumann HP, Wittke C, Jaenig H, Mašek O, Streicher T, Pausch F, Engelhardt D, Plate KH, Höfler H, Chen F (1996) Mutations in the VHL tumor suppressor gene and associated lesions in families with von Hippel-Lindau disease from central Europe. Hum Genet 98(3):271–280

    Article  PubMed  Google Scholar 

  • Glushkova M, Dimova P, Yordanova I, Todorov T, Tourtourikov I, Mitev V, Todorova A (2018) Molecular-genetic diagnostics of von Hippel-Lindau syndrome (VHL) in Bulgaria: first complex mutation event in the VHL gene. Int J Neurosci 128(2):117–124

    Article  PubMed  CAS  Google Scholar 

  • Gomy I, Molfetta GA, de Andrade BE, Ferreira CA, Zanette DL, Casali-da-Rocha JC, Silva WA (2010) Clinical and molecular characterization of Brazilian families with von Hippel-Lindau disease: a need for delineating genotype-phenotype correlation. Fam Cancer 9(4):635–642

    Article  PubMed  Google Scholar 

  • Gossage L, Eisen T, Maher ER (2015) VHL, the story of a tumour suppressor gene. Nat Rev Cancer 15(1):55–64. https://doi.org/10.1038/nrc3844

    Article  PubMed  CAS  Google Scholar 

  • Gross DJ, Avishai N, Meiner V, Filon D, Zbar B, Abeliovich D (1996) Familial pheochromocytoma associated with a novel mutation in the von Hippel-Lindau gene. J Clin Endocrinol Metab 1:147–149

    Google Scholar 

  • Haddad NM, Cavallerano JD, Silva PS (2013) Von hippel-lindau disease: a genetic and clinical review. Semin Ophthalmol 28(5–6):377–386. https://doi.org/10.3109/08820538.2013.825281

    Article  PubMed  Google Scholar 

  • Hajjaj A, van Overdam KA, Oldenburg RA, Koopmans AE, van den Ouweland AM, de Klein A, Kiliç E (2020) Retinal haemangioblastomas in von Hippel-Lindau germline mutation carriers: progression, complications and treatment outcome. Acta Ophthalmol 98(5):464–471. https://doi.org/10.1111/aos.14360

    Article  PubMed Central  CAS  Google Scholar 

  • Hes F, Zewald R, Peeters T, Sijmons R, Links T, Verheij J, Matthijs G, Legius E, Mortier G, Van Der Torren K, Rosman M (2000) Genotype-phenotype correlations in families with deletions in the von Hippel-Lindau (VHL) gene. Hum Genet 106(4):425–431

    Article  PubMed  CAS  Google Scholar 

  • Hong B, Ma K, Zhou J, Zhang J, Wang J, Liu S, Zhang Z, Cai L, Zhang N, Gong K (2019) Frequent Mutations of VHL Gene and the Clinical Phenotypes in the Largest Chinese Cohort With Von Hippel-Lindau Disease. Front Genet 10:867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Zhou D, Liu J, Zhou P, Li X, Wang Z (2012) Germline mutations of the VHL gene in seven Chinese families with von Hippel-Lindau disease. Int J Mol Med 1:47–52

    Google Scholar 

  • Iida K, Okimura Y, Takahashi K, Inomata S, Iguchi G, Kaji H, Chihara K (2004) A variety of phenotype with R161Q germline mutation of the von Hippel-Lindau tumor suppressor gene in Japanese kindred. Int j Mol Med 13(3):401–404

    PubMed  CAS  Google Scholar 

  • Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93(20):10595–10599. https://doi.org/10.1073/pnas.93.20.10595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang HC, Kim IJ, Park JH, Shin Y, Jang SG, Ahn SA, Park HW, Lim SK, Oh SK, Kim DJ, Lee KW (2005) Three novel VHL germline mutations in Korean patients with von Hippel-Lindau disease and pheochromocytomas. Oncol Rep 14(4):879–883

    PubMed  Google Scholar 

  • Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22(24):4991–5004. https://doi.org/10.1200/jco.2004.05.061

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823. https://doi.org/10.1073/pnas.68.4.820

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreusel KM, Bechrakis NE, Krause L, Neumann HP, Foerster MH (2006) Retinal angiomatosis in von Hippel-Lindau disease: a longitudinal ophthalmologic study. Ophthalmology 113(8):1418–1424. https://doi.org/10.1016/j.ophtha.2006.02.059

    Article  PubMed  Google Scholar 

  • Lamiell JM, Salazar FG, Hsia YE (1989) von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine 68(1):1–29

    Article  PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, Schmidt L (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260(5112):1317–1320. https://doi.org/10.1126/science.8493574

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Lee JH, Lee KE, Kim JH, Hong JM, Ra EK, Seo SH, Lee SJ, Kim MJ, Park SS, Seong MW (2016) Genotype-phenotype analysis of von Hippel-Lindau syndrome in Korean families: HIF-α binding site missense mutations elevate age-specific risk for CNS hemangioblastoma. BMC Med Genet 17(1):1–8

    Article  CAS  Google Scholar 

  • Lenglet M, Robriquet F, Schwarz K, Camps C, Couturier A, Hoogewijs D, Buffet A, Knight SJ, Gad S, Couvé S, Chesnel F (2018) Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood 132(5):469–483

    Article  PubMed  CAS  Google Scholar 

  • Leonardi E, Martella M, Tosatto SC, Murgia A (2011) Identification and in silico analysis of novel von Hippel-Lindau (VHL) gene variants from a large population. Ann Hum Genet 75(4):483–496

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Yuan G, Tong D, Liu G, Yi Y, Zhang J, Zhang Y, Wang LA, Wang L, Zhang D, Chen R (2018) Novel genotype–phenotype correlations in five Chinese families with Von Hippel-Lindau disease. Endocr Connect 7(7):870–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lomte N, Kumar S, Sarathi V, Pandit R, Goroshi M, Jadhav S, Lila AR, Bandgar T, Shah NS (2018) Genotype phenotype correlation in Asian Indian von Hippel-Lindau (VHL) syndrome patients with pheochromocytoma/paraganglioma. Fam Cancer 17(3):441–449

    Article  PubMed  CAS  Google Scholar 

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel-Lindau disease. Lancet 361(9374):2059–2067. https://doi.org/10.1016/s0140-6736(03)13643-4

    Article  PubMed  CAS  Google Scholar 

  • Losonczy G, Fazakas F, Pfliegler G, Komáromi I, Balázs E, Pénzes K, Berta A (2013) Three novel germ-line VHL mutations in Hungarian von Hippel-Lindau patients, including a nonsense mutation in a fifteen-year-old boy with renal cell carcinoma. BMC Med Genet 14(1):1–8

    Article  Google Scholar 

  • Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT, Ferguson-Smith MA (1990) Clinical features and natural history of von Hippel-Lindau disease. QJM-INT J MED 2:1151–1163

    Article  Google Scholar 

  • Maher ER, Neumann HP, Richard S (2011) von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 19(6):617–623. https://doi.org/10.1038/ejhg.2010.175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  PubMed  CAS  Google Scholar 

  • Melville MW, McClellan AJ, Meyer AS, Darveau A, Frydman J (2003) The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Mol Cell Biol 23(9):3141–3151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mettu P, Agrón E, Samtani S, Chew EY, Wong WT (2010) Genotype-phenotype correlation in ocular von hippel-lindau (VHL) disease: the effect of missense mutation position on ocular VHL phenotype. Invest Ophthalmol vis Sci 51(9):4464–4470. https://doi.org/10.1167/iovs.10-5223

    Article  PubMed  PubMed Central  Google Scholar 

  • Minervini G, Quaglia F, Tabaro F, Tosatto SC (2019) Genotype-phenotype relations of the von Hippel-Lindau tumor suppressor inferred from a large-scale analysis of disease mutations and interactors. PLoS Comput Biol 15(4):e1006478. https://doi.org/10.1371/journal.pcbi.1006478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen SM, Rhodes L, Blanco IG, Chung WK, Eng C, Maher E, Richard S, Giles RH (2016) Von Hippel-Lindau disease: genetics and role of genetic counseling in a multiple neoplasia syndrome. J Clin Oncol 34(18):2172–2181. https://doi.org/10.1200/jco.2015.65.6140

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom-O’Brien M, van der Luijt RB, van Rooijen E, van den Ouweland AM, Majoor-Krakauer DF, Lolkema MP, van Brussel A, Voest EE, Giles RH (2010) Genetic analysis of von Hippel-Lindau disease. Hum Mutat 31(5):521–537. https://doi.org/10.1002/humu.21219

    Article  PubMed  CAS  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Shepard MJ, Wang J, Li T, Ning X, Cai L, Zhuang Z, Gong K (2017) Genotype-phenotype correlations in Chinese von Hippel-Lindau disease patients. Oncotarget 8(24):38456

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Nava-Salazar S, Yescas P, Alonso E, Revuelta R, Ortiz I, Canizales-Quinteros S, Tusié-Luna MT, López-López M (2006) Von Hippel-Lindau disease germline mutations in Mexican patients with cerebellar hemangioblastoma. J Neurosurg 104(3):389–394

    Article  PubMed  CAS  Google Scholar 

  • Rocha JC, Silva RL, Mendonca BB, Marui S, Simpson AJ, Camargo AA (2003) High frequency of novel germline mutations in the VHL gene in the heterogeneous population of Brazil. J Med Genet 40(3):e31–e31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Llorente S, Bravo J, Cebrián A, Cascón A, Pollan M, Tellería D, Letón R, Urioste M, Rodríguez-López R, de Campos JM, Muñoz MJ (2004) Genetic characterization and structural analysis of VHL Spanish families to define genotype–phenotype correlations. Hum Mutat 23(2):160–169

    Article  PubMed  CAS  Google Scholar 

  • Sgambati MT, Stolle C, Choyke PL, Walther MM, Zbar B, Linehan WM, Glenn GM (2000) Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am J Hum Genet 66(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Sorrell AD, Lee S, Stolle C, Ellenhorn J, Grix A, Kaelin WG Jr, Weitzel JN (2011) Clinical and functional properties of novel VHL mutation (X214L) consistent with Type 2A phenotype and low risk of renal cell carcinoma. Clin Genet 79(6):539–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sriphrapradang C, Choopun K, Tunteeratum A, Sura T (2017) Genotype-phenotype correlation in patients with germline mutations of VHL, RET, SDHB, and SDHD genes: Thai experience. Clin Med Insights: Endocrinol Diabetes 10:1179551417705122

    Google Scholar 

  • Stebbins CE, Kaelin WG, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284(5413):455–461

    Article  PubMed  CAS  Google Scholar 

  • Tarade D, Ohh M (2018) The HIF and other quandaries in VHL disease. Oncogene 37(2):139–147. https://doi.org/10.1038/onc.2017.338

    Article  PubMed  CAS  Google Scholar 

  • van der Harst E, De Krijger RR, Dinjens WN, Weeks LE, Bonjer HJ, Bruining HA, Lamberts SW, Koper JW (1998) Germline mutations in the vhl gene in patients presenting with phaeochromocytomas. Int J Cancer 77(3):337–340

    Article  PubMed  Google Scholar 

  • Vikkath N, Valiyaveedan S, Nampoothiri S, Radhakrishnan N, Pillai GS, Nair V, Pooleri GK, Mathew G, Menon KN, Ariyannur PS, Pillai AB (2015) Genotype–phenotype analysis of von Hippel-Lindau syndrome in fifteen Indian families. Fam Cancer 14(4):585–594

    Article  PubMed  Google Scholar 

  • Webster AR, Maher ER, Moore AT (1999) Clinical characteristics of ocular angiomatosis in von Hippel-Lindau disease and correlation with germline mutation. Arch Ophthalmol 117(3):371–378. https://doi.org/10.1001/archopht.117.3.371

    Article  PubMed  CAS  Google Scholar 

  • Wittström E, Nordling M, Andréasson S (2014) Genotype-phenotype correlations, and retinal function and structure in von Hippel-Lindau disease. Ophthalmic Genet 35(2):91–106

    Article  PubMed  Google Scholar 

  • Wong WT, Agrón E, Coleman HR, Reed GF, Csaky K, Peterson J, Glenn G, Linehan WM, Albert P, Chew EY (2007) Genotype-phenotype correlation in von Hippel-Lindau disease with retinal angiomatosis. Arch Ophthalmol 125(2):239–245. https://doi.org/10.1001/archopht.125.2.239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woodward ER, Buchberger A, Clifford SC, Hurst LD, Affara NA, Maher ER (2000) Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 65(3):253–265. https://doi.org/10.1006/geno.2000.6144

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Zhang N, Wang X, Ning X, Li T, Bu D, Gong K (2012) Family history of von Hippel-Lindau disease was uncommon in Chinese patients: suggesting the higher frequency of de novo mutations in VHL gene in these patients. J Hum Genet 57(4):238–243

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chen L, Zhang Y, Xie H, Xue M, Wang Y, Huang H (2018) A novel mutation in the VHL gene in a Chinese family with von Hippel-Lindau disease. BMC Med Genet 19(1):1–5

    Article  Google Scholar 

  • Yoshida M, Ashida S, Kondo K, Kobayashi K, Kanno H, Shinohara N, Shitara N, Kishida T, Kawakami S, Baba M, Yamamoto I (2000) Germ-line mutation analysis in patients with von Hippel-Lindau disease in Japan: an extended study of 77 families. Jpn J Cancer Res 91(2):204–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Iran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

FA. performed the search, assessed the references for inclusion and extracted data from the studies, GK. Perform the final article check, SCH. Performed the statistical calculation and rechecked inclusion and extracted data. FA, AA. and SCH. wrote the main manuscript text.

Corresponding authors

Correspondence to Ali Aghajani or Samira Chaibakhsh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent for this study is not necessary.

Additional information

Communicated by Shuhua Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 8 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, F., Aghajani, A., Khakpour, G. et al. A meta-analysis of different von Hippel Lindau mutations: are they related to retinal capillary hemangioblastoma?. Mol Genet Genomics 297, 1615–1626 (2022). https://doi.org/10.1007/s00438-022-01940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01940-z

Keywords

Navigation