Skip to main content

Advertisement

Log in

Screening gene signatures for clinical response subtypes of lung transplantation

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Lung is the most important organ in the human respiratory system, whose normal functions are quite essential for human beings. Under certain pathological conditions, the normal lung functions could no longer be maintained in patients, and lung transplantation is generally applied to ease patients’ breathing and prolong their lives. However, several risk factors exist during and after lung transplantation, including bleeding, infection, and transplant rejections. In particular, transplant rejections are difficult to predict or prevent, leading to the most dangerous complications and severe status in patients undergoing lung transplantation. Given that most common monitoring and validation methods for lung transplantation rejections may take quite a long time and have low reproducibility, new technologies and methods are required to improve the efficacy and accuracy of rejection monitoring after lung transplantation. Recently, one previous study set up the gene expression profiles of patients who underwent lung transplantation. However, it did not provide a tool to predict lung transplantation responses. Here, a further deep investigation was conducted on such profiling data. A computational framework, incorporating several machine learning algorithms, such as feature selection methods and classification algorithms, was built to establish an effective prediction model distinguishing patient into different clinical subgroups, corresponding to different rejection responses after lung transplantation. Furthermore, the framework also screened essential genes with functional enrichments and create quantitative rules for the distinction of patients with different rejection responses to lung transplantation. The outcome of this contribution could provide guidelines for clinical treatment of each rejection subtype and contribute to the revealing of complicated rejection mechanisms of lung transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data used in this study were retrieved from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125004).

References

  • Afzali B, Lombardi G, Lechler R, Lord G (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade CF, Kaneda H, Der S, Tsang M, Lodyga M, dos Santos CC, Keshavjee S, Liu M (2006) Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation. J Heart Lung Transplant 25:1317–1323

    Article  PubMed  Google Scholar 

  • Aquino-Galvez A, Camarena Á, Montaño M, Juarez A, Zamora AC, González-Avila G, Checa M, Sandoval-López G, Vargas-Alarcon G, Granados J (2008) Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Exp Mol Pathol 84:173–177

    Article  CAS  PubMed  Google Scholar 

  • Belperio JA, Burdick MD, Keane MP, Xue YY, Lynch JP, Daugherty BL, Kunkel SL, Strieter RM (2000) The role of the CC chemokine, RANTES, in acute lung allograft rejection. J Immunol 165:461–472

    Article  CAS  PubMed  Google Scholar 

  • Belperio JA, Keane MP, Burdick MD, Lynch JP, Zisman DA, Xue YY, Li K, Ardehali A, Ross DJ, Strieter RM (2003) Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 171:4844–4852

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur A, Ong CS, Sonnenburg SR, Lkopf BS, Ratsch G (2008) Support vector machines and kernels for computational biology. PLoS Comput Biol 4:e1000173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyden EA (1945) The intrahilar and related segmental anatomy of the lung. Surgery 18:711–731

    Google Scholar 

  • Brabcová E, Kolesár L, Thorburn E, Striz I (2014) Chemokines induced in human respiratory epithelial cells by IL-1 family of cytokines. Folia Biol 60:180

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM (2007) Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 81:8692–8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carayannopoulos LN, Barks JL, Yokoyama WM, Riley JK (2010) Murine trophoblast cells induce NK cell interferon-gamma production through KLRK1. Biol Reprod 83:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadha R, Heidt S, Jones ND, Wood KJ (2011) Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation 91:939–945

    Article  PubMed  Google Scholar 

  • Chan CW, Crafton E, Fan H-N, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky TW, Stins MF, Lanier LL (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12:207–213

    Article  CAS  PubMed  Google Scholar 

  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  • Chen W, Chen L, Dai Q (2021) iMPT-FDNPL: identification of membrane protein types with functional domains and a natural language processing approach. Comput Math Methods Med 2021:7681497

    PubMed  PubMed Central  Google Scholar 

  • Chen HL, Gabrilovich D, Tampé R, Girgis KR, Nadaf S, Carbone DP (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 13:210–213

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li Z, Zhang S, Zhang Y-H, Huang T, Cai Y-D (2022) Predicting RNA 5-methylcytosine sites by using essential sequence features and distributions. Biomed Res Int 2022:4035462

    PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang S, Zhang YH, Li J, Xing ZH, Yang J, Huang T, Cai YD (2017) Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access 5:26582–26590

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Cui S, Youn E, Lee J, Maas SJ (2014) An improved systematic approach to predicting transcription factor target genes using support vector machine. PLoS ONE 9:e94519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cully M (2017) Cancer: strategies for mature T cell cancers. Nat Rev Drug Discovery 17:15

    Article  PubMed  CAS  Google Scholar 

  • Daliri MR (2015) Combining extreme learning machines using support vector machines for breast tissue classification. Comput Methods Biomech Biomed Engin 18:185–191

    Article  PubMed  Google Scholar 

  • Damiano A, Zotta E, Goldstein J, Reisin I, Ibarra C (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22:776–781

    Article  CAS  PubMed  Google Scholar 

  • Diette GB, Wiener CM, White P Jr (1999) The higher risk of bleeding in lung transplant recipients from bronchoscopy is independent of traditional bleeding risks: results of a prospective cohort study. Chest 115:397–402

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Dubchak I (2001) Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17:349–358

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Wang D, Zhou X, Chen L, Feng K, Xu X, Huang T, Li Z, Cai Y (2022) Predicting heart cell types by using transcriptome profiles and a machine learning method. Life 12:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kebir D, Filep JG (2010) Role of neutrophil apoptosis in the resolution of inflammation. Sci World J 10:1731–1748

    Article  CAS  Google Scholar 

  • Fang A, Studer S, Kawut SM, Ahya VN, Lee J, Wille K, Lama V, Ware L, Orens J, Weinacker A (2011) Elevated pulmonary artery pressure is a risk factor for primary graft dysfunction following lung transplantation for idiopathic pulmonary fibrosis. Chest 139:782–787

    Article  PubMed  Google Scholar 

  • Fuehner T, Kuehn C, Welte T, Gottlieb J (2016) ICU care before and after lung transplantation. Chest 150:442–450

    Article  PubMed  Google Scholar 

  • Gorodkin J (2004) Comparing two K-category assignments by a K-category correlation coefficient. Comput Biol Chem 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Guyon I, Weston J, Barnhill SMD, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  • Halloran K, Parkes MD, Timofte IL, Snell GI, Westall GP, Hachem R, Kreisel D, Levine D, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Hirji A, Weinkauf J, Halloran PF (2020) Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants. Am J Transplant 20:954–966

    Article  CAS  PubMed  Google Scholar 

  • Hangler HB, Ruttmann E, Geltner C, Bucher B, Nagiller J, Laufer G, Mueller LC (2008) Single time point measurement by C2 or C3 is highly predictive in cyclosporine area under the curve estimation immediately after lung transplantation. Clin Transplant 22:35–40

    PubMed  Google Scholar 

  • Harjula A, Baldwin JC, Starnes VA, Stinson EB, Oyer PE, Jamieson SW, Shumway NE (1987) Proper donor selection for heart-lung transplantation: the Stanford experience. J Thorac Cardiovasc Surg 94:874–880

    Article  CAS  PubMed  Google Scholar 

  • Higenbottam T, Stewart S, Penketh A, Wallwork J (1988) Transbronchial lung biopsy for the diagnosis of rejection in heart-lung transplant patients. Transplantation 46:532–539

    Article  CAS  PubMed  Google Scholar 

  • Horvath J, Dummer S, Loyd J, Walker B, Merrill WH, Frist WH (1993) Infection in the transplanted and native lung after single lung transplantation. Chest 104:681–685

    Article  CAS  PubMed  Google Scholar 

  • Hsiao H-M, Scozzi D, Gauthier JM, Kreisel D (2017) Mechanisms of graft rejection after lung transplantation. Curr Opin Organ Transplant 22:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu AY, Liu S, Syahirah R, Brasseale KA, Wan J, Deng Q (2019) Inducible overexpression of zebrafish microRNA-722 suppresses chemotaxis of human neutrophil like cells. Mol Immunol 112:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728

    Article  CAS  PubMed  Google Scholar 

  • Ijaz A (2013) SUMOhunt: combining spatial staging between lysine and SUMO with random forests to predict SUMOylation. ISRN Bioinform 2013:671269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Sun S, Xu A, Bhargava P, Yang L, Lam KS, Gao B, Lee C-H, Kersten S, Qi L (2012) Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J Biol Chem 287:13561–13571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Zhao R, Chen L (2020) Similarity-based machine learning model for predicting the metabolic pathways of compounds. IEEE Access 8:130687–130696

    Article  Google Scholar 

  • Kandaswamy KK, Chou K-C, Martinetz T, Möller S, Suganthan P, Sridharan S, Pugalenthi G (2011) AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 270:56–62

    Article  CAS  PubMed  Google Scholar 

  • Kanj SS, Tapson V, Davis RD, Madden J, Browning I (1997) Infections in patients with cystic fibrosis following lung transplantation. Chest 112:924–930

    Article  CAS  PubMed  Google Scholar 

  • Kramer M, Stoehr C, Whang J, Berry G, Sibley R, Marshall S, Patterson G, Starnes V, Theodore J (1993) The diagnosis of obliterative bronchiolitis after heart-lung and lung transplantation: low yield of transbronchial lung biopsy. J Heart Lung Transplant 12:675–681

    CAS  PubMed  Google Scholar 

  • Kursa M, Rudnicki W (2010) Feature selection with the Boruta package. Journal of Statistical Software, Articles 36:1–13

    Google Scholar 

  • Lahzami S, Bridevaux P-O, Soccal P, Wellinger J, Robert J, Ris H, Aubert J (2010) Survival impact of lung transplantation for COPD. Eur Respir J 36:74–80

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lu L, Chen L (2022a) Identification of protein functions in mouse with a label space partition method. Math Biosci Eng 19:3820–3842

    Article  PubMed  Google Scholar 

  • Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai Y-D (2022b) Exploring the genomic patterns in human and mouse cerebellums via single-cell sequencing and machine learning method. Front Genet 13:857851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Hu B, Chen L, Lu L (2021) Identifying protein subcellular location with embedding features learned from networks. Curr Proteomics 18:646–660

    CAS  Google Scholar 

  • Liu HA, Setiono R (1998) Incremental feature selection. Appl Intell 9:217–230

    Article  Google Scholar 

  • Loupy A, Duong Van Huyen JP, Hidalgo L, Reeve J, Racapé M, Aubert O, Venner JM, Falmuski K, Bories MC, Beuscart T (2017) Gene expression profiling for the identification and classification of antibody-mediated heart rejection. Circulation 135:917–935

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Chen X, Lee A-H, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews B (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  CAS  PubMed  Google Scholar 

  • Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF (2013) Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE 8:e64134

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyaizu T, Fung S-Y, Shiozaki A, Guan Z, Zhang Q, Dos Santos CC, Han B, Mura M, Keshavjee S, Liu M (2012) Src tyrosine kinase inhibition prevents pulmonary ischemia–reperfusion-induced acute lung injury. Intensive Care Med 38:894–905

    Article  CAS  PubMed  Google Scholar 

  • Palmer SM, Alexander BD, Sanders LL, Edwards LJ, Reller LB, Davis RD, Tapson VF (2000) Significance of blood stream infection after lung transplantation: analysis in 176 consecutive patients1. Transplantation 69:2360–2366

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Li H, Zeng T, Li Z, Chen L, Huang T, Cai Y-D (2021) Identification of protein subcellular localization with network and functional embeddings. Front Genet 11:626500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasupneti S, Dhillon G, Reitz B, Khush K (2017) Combined heart lung transplantation: an updated review of the current literature. Transplantation 101:2297–2302

    Article  PubMed  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  PubMed  Google Scholar 

  • Protti A, Andreis DT, Milesi M, Iapichino GE, Monti M, Comini B, Pugni P, Melis V, Santini A, Dondossola D (2015) Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Wang X (2011) Improved prediction of protein ligand-binding sites using random forests. Protein Pept Lett 18:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth DB, Wilson K, Ferkol T, Schuster DP (2004) Lung function decline in cystic fibrosis patients and timing for lung transplantation referral. Chest 126:412–419

    Article  PubMed  Google Scholar 

  • Roux A, Bendib Le Lan I, Holifanjaniaina S, Thomas K, Hamid A, Picard C, Grenet D, De Miranda S, Douvry B, Beaumont-Azuar L (2016) Antibody-mediated rejection in lung transplantation: clinical outcomes and donor-specific antibody characteristics. Am J Transplant 16:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Sacreas A, Yang JY, Vanaudenaerde BM, Sigdel TK, Liberto JM, Damm I, Verleden GM, Vos R, Verleden SE, Sarwal MM (2018) The common rejection module in chronic rejection post lung transplantation. PLoS ONE 13:e0205107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21:660–674

    Article  Google Scholar 

  • Salomon DR, Kurian S, Abecassis MM (2017) Tissue molecular signatures of kidney transplant rejection. In. Google Patents

  • Schachna L, Medsger TA Jr, Dauber JH, Wigley FM, Braunstein NA, White B, Steen VD, Conte JV, Yang SC, McCurry KR (2006) Lung transplantation in scleroderma compared with idiopathic pulmonary fibrosis and idiopathic pulmonary arterial hypertension. Arthritis Rheum 54:3954–3961

    Article  PubMed  Google Scholar 

  • Sprague B, Shi Q, Kim MT, Zhang LY, Sedykh A, Ichiishi E, Tokuda H, Lee KH, Zhu H (2014) Design, synthesis and experimental validation of novel potential chemopreventive agents using random forest and support vector machine binary classifiers. J Comput Aided Mol Des 28:631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thabut G, Dauriat G, Stern JB, Logeart D, Levy A, Marrash-Chahla R, Mal H (2005) Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 127:1531–1536

    Article  PubMed  Google Scholar 

  • Theilhaber J, Connolly T, Roman-Roman S, Bushnell S, Jackson A, Call K, Garcia T, Baron R (2002) Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. Genome Res 12:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S (1992) TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4− 8+ T cells. Cell 71:1205–1214

    Article  PubMed  Google Scholar 

  • Vassiliou AG, Manitsopoulos N, Kardara M, Maniatis NA, Orfanos SE, Kotanidou A (2017) Differential expression of aquaporins in experimental models of acute lung injury. In Vivo 31:885–894

    CAS  PubMed  Google Scholar 

  • Venner J, Famulski K, Badr D, Hidalgo L, Chang J, Halloran P (2014) Molecular landscape of T cell-mediated rejection in human kidney transplants: prominence of CTLA4 and PD ligands. Am J Transplant 14:2565–2576

    Article  CAS  PubMed  Google Scholar 

  • Watkins JD, Vasserot AP, Greene LA, Adams RA, Piehl KH, Hong F, Chiang KP, Zhang W, He A (2015) Aminoacyl tRNA synthetases for modulating inflammation. In. Google Patents

  • Weigt SS, Wang X, Palchevskiy V, Gregson AL, Patel N, DerHovanessian A, Shino MY, Sayah DM, Birjandi S, Lynch JP III (2017) Gene expression profiling of bronchoalveolar lavage cells preceding a clinical diagnosis of chronic lung allograft dysfunction. PLoS ONE 12:e0169894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weigt SS, Wang X, Palchevskiy V, Li X, Patel N, Ross DJ, Reynolds J, Shah PD, Danziger-Isakov LA, Sweet SC (2019) Usefulness of gene expression profiling of bronchoalveolar lavage cells in acute lung allograft rejection. J Heart Lung Transplant 38:845–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Xiang T, Ge S, Wen J, Xie J, Yang L, Wu X, Cheng N (2018) The possible association between AQP9 in the intestinal epithelium and acute liver injury-induced intestinal epithelium damage. Mol Med Rep 18:4987–4993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chen L (2022) Identification of drug–disease associations by using multiple drug and disease networks. Curr Bioinform 17:48–59

    Article  Google Scholar 

  • Yu Z, Chen H, Liuxs J, You J, Leung H, Han G (2016) Hybrid k -nearest neighbor classifier. IEEE Trans Cybern 46:1263–1275

    Article  PubMed  Google Scholar 

  • Zhang B, Srihari SN (2004) Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans Pattern Anal Mach Intell 26:525–528

    Article  PubMed  Google Scholar 

  • Zhang Y-H, Li H, Zeng T, Chen L, Li Z, Huang T, Cai Y-D (2021a) Identifying transcriptomic signatures and rules for SARS-CoV-2 infection. Frontiers in Cell and Developmental Biology 8:627302

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-H, Li Z, Zeng T, Chen L, Li H, Huang T, Cai Y-D (2021b) Detecting the multiomics signatures of factor-specific inflammatory effects on airway smooth muscles. Front Genet 11:599970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Chen L, Lu J (2018) A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci 306:136–144

    Article  CAS  PubMed  Google Scholar 

  • Zhou J-P, Chen L, Wang T, Liu M (2020) iATC-FRAKEL: a simple multi-label web-server for recognizing anatomical therapeutic chemical classes of drugs with their fingerprints only. Bioinformatics 36:3568–3569

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences [XDA26040304, XDB38050200], National Key R&D Program of China [2018YFC0910403], the Fund of the Key Laboratory of Tissue Microenvironment and Tumor of Chinese Academy of Sciences [202002].

Author information

Authors and Affiliations

Authors

Contributions

TH and YDC: designed the study, supervised the project and finalized the manuscript. YHZ, TZ and LC: did the experiments. YHZ and TZ: analyzed the results. YHZ and TZ: drafted the manuscript.

Corresponding authors

Correspondence to Tao Huang or Yu-Dong Cai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by Shuhua Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

438_2022_1918_MOESM1_ESM.xlsx

Supplementary file1 Supplementary Material I. Genes filtered by Boruta and their ranks produced by mRMR method. (XLSX 20 KB)

438_2022_1918_MOESM2_ESM.xlsx

Supplementary file2 Supplementary Material II. Performance of IFS with different classification models under different numbers of features. (XLSX 84 KB)

Supplementary file3 Supplementary Material III. List of enriched GO terms. (XLSX 17 KB)

Supplementary file4 Supplementary Material IV. List of enriched KEGG pathways. (XLSX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Li, Z.D., Zeng, T. et al. Screening gene signatures for clinical response subtypes of lung transplantation. Mol Genet Genomics 297, 1301–1313 (2022). https://doi.org/10.1007/s00438-022-01918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01918-x

Keywords

Navigation