Skip to main content
Log in

Transcriptome and metabolome profiling in different stages of infestation of Eucalyptus urophylla clones by Ralstonia solanacearum

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Eucalyptus urophylla is an economically important tree species that widely planted in tropical and sub-tropical areas around the world, which suffers significant losses due to Ralstonia solanacearum. However, little is known about the molecular mechanism of pathogen-response of Eucalyptus. We collected the vascular tissues of a E. urophylla clone infected by R. solanacearum in the laboratory, and combined transcriptome and metabolome analysis to investigate the defense responses of Eucalyptus. A total of 11 flavonoids that differentially accumulated at the first stage or a later stage after infection. The phenylpropanoid of p-coumaraldehyde, the two alkaloids trigonelline and dl-ephedrine, two types of traditional Chinese medicine with patchouli alcohol and 3-dihydrocadambine, and the amino acid phenylalanine were differentially accumulated after infection, which could be biomarkers indicating a response to R. solanacearum. Differentially expressed genes involved in plant hormone signal transduction, phenylpropanoids, flavonoids, mitogen-activated protein kinase (MAPK) signaling, and amino acid metabolism were activated at the first stage of infection or a later stage, indicating that they may participate in the defense against infection. This study is expected to deliver several insights into the molecular mechanism in response to pathogens in E. urophylla, and the findings have far-reaching implications in the control of E. urophylla pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2021), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences, under accession number CRA005055 that are publicly accessible at https://ngdc.cncb.ac.cn/gsa. The materials obtained and used in this study are available from the corresponding author on reasonable request.

References

  • Abdelrahman M, Nakabayashi R, Mori T, Ikeuchi T, Mori M, Murakami K, Ozaki Y, Matsumoto M, Uragami A, Tsujimoto H, Tran LP, Kanno A (2020) Comparative metabolome and transcriptome analyses of susceptible Asparagus officinalis and resistant Wild A. kiusianus reveal insights into stem blight disease resistance. Plant Cell Physiol 61:1464–1476

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M (2020) Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants (Basel) 9(11):1098

    Article  CAS  Google Scholar 

  • Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martinez-Zapater JM, Kopka J, Fortes AM (2015) Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot 66:1769–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Sunarti S, Kissoudis C, Visser R, van der Linden CG (2018) The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front Plant Sci 9:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560

    Article  Google Scholar 

  • Chen YN, Ren XP, Zhou XJ, Huang L, Huang JQ, Yan LY, Lei Y, Qi Y, Wei WH, Jiang HF (2014) Alteration of gene expression profile in the roots of wild diploid Arachis duranensis inoculated with Ralstonia solanacearum. Plant Pathol 63:803–811

    Article  CAS  Google Scholar 

  • Chen L, Wu Q, He W, He T, Wu Q, Miao Y (2019) Combined De Novo transcriptome and metabolome analysis of common bean response to Fusarium oxysporum f. sp. phaseoli infection. Int J Mol Sci 20(24):6278

    Article  CAS  PubMed Central  Google Scholar 

  • Ferreira MA, Mafia RG, Alfenas AC (2018) Ralstonia solanacearum decreases volumetric growth of trees and yield of kraft cellulose of Eucalyptus spp. Forest Pathol 48:e12376

    Article  Google Scholar 

  • Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Ou YB, Yao YA (2020) The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168:98–117

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Guo ZH, Hao PP, Wang GM, Jin ZM, Zhang SL (2017) Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud 58:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutensohn M, Klempien A, Kaminaga Y, Nagegowda DA, Negre-Zakharov F, Huh J, Luo H, Weizbauer R, Mengiste T, Tholl D, Dudareva N (2011) Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Plant J 66:591–602

    Article  CAS  PubMed  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • Hsu PK, Takahashi Y, Munemasa S, Merilo E, Laanemets K, Waadt R, Pater D, Kollist H, Schroeder JI (2018) Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase. Proc Natl Acad Sci USA 115:E9971–E9980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I, Marco Y (2008) Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium. Ralstonia Solanacearum Plos One 3:e2589

    Article  PubMed  CAS  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huai B, Yang Q, Qian Y, Qian W, Kang Z, Liu J (2019) ABA-induced sugar transporter TaSTP6 promotes wheat susceptibility to stripe rust. Plant Physiol 181:1328–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami K, Okamoto M, Seo M, Koshiba T (2009) Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res 122:235–243

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012) Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7:e46763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinski M, Kachlicki P, Rodziewicz P, Figlerowicz M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47:847–853

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, Liao B (2017) Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci 8:1549

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant and Cell Physiol 46:399–406

    Article  CAS  Google Scholar 

  • Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng 41:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MM, Schiefelbein J (2002) Cell pattern in the arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Kitashiba H, Nishio T (2011) Association of sequence variation in Brassica GLABRA1 orthologs with leaf hairiness. Mol Breeding 28:577–584

    Article  CAS  Google Scholar 

  • Liang J, He J (2018) Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun 498:946–953

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Vilela B, Irar S, Solé M, Capellades M, Valls M, Coca M, Pagès M (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500–513

    Article  CAS  PubMed  Google Scholar 

  • Murota K, Nakamura Y, Uehara M (2018) Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 82:600–610

    Article  CAS  PubMed  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Kulheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    Article  CAS  PubMed  Google Scholar 

  • Fonseca NR, Oliveira LSS, Guimarães LMS, Teixeira RU, Lopes CA, Alfenas AC (2016) An efficient inoculation method of Ralstonia solanacearum to test wilt resistance in Eucalyptus spp. Trop Plant Pathol 41:42–47

  • Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, Khan KA, Ghramh HA, He S (2019) A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen. Microb Pathogenesis 137:103758

    Article  Google Scholar 

  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493

    Article  CAS  PubMed  Google Scholar 

  • Peirats-Llobet M, Lewsey MG (2020) Plant pathology 101: how to get away with infection. New Phytol 225:601–603

    Article  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigvert M, Guarischi-Sousa R, Zuluaga P, Coll NS, Macho AP, Setubal JC, Valls M (2017) Transcriptomes of Ralstonia solanacearum during root colonization of Solanum commersonii. Front Plant Sci 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Raffaele S, Rivas S, Roby D (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 580:3498–3504

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rodas CA, Roux J, Maier W, Granados G, Bolaños M, McTaggart R, Wingfield MJ (2015) First report of Puccinia psidii on Corymbia citriodora and Eucalyptus in Colombia. Forest Pathol 45(6):534–536

    Article  Google Scholar 

  • Shen L, Yang S, Yang F, Guan D, He S (2020) CaCBL1 acts as a positive regulator in pepper response to Ralstonia solanacearum. Mol Plant Microbe Interact 33:945–957

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinform 14:219

    Article  Google Scholar 

  • Tiki KR (2021) Survey of Eucalyptus nursery diseases in central and south west Ethiopia. Plant 9(4):93–96

    Google Scholar 

  • Van Wyk M, Roux J, Nkuekam GK, Wingfield BD, Wingfield MJ (2012) Ceratocystis eucalypticola sp. nov. from Eucalyptus in South Africa and comparison to global isolates from this tree. IMA Fungus 3(1):45–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasse JICC, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251

    Article  CAS  Google Scholar 

  • Villano C, Esposito S, D’Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D (2020) WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep 10:7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yan Y, Li Y, Chu X, Wu C, Guo X (2014) GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS One 9:e93577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Kong J, Cui D, Zhao H, Niu Y, Xu M, Jiang G, Zhao Y, Wang W (2019) Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the gamma-aminobutyric acid metabolic pathway. Plant J 97:1032–1047

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhang Y, Meng J, Wang Y, Zhong C, Ma H (2021) Transcriptome and metabolome profiling in naturally infested Casuarina equisetifolia clones by Ralstonia solanacearum. Genomics 113:1906–1918

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Chen M, Li L, Ma Y (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Inte Plant Biol 53(7):570–585

    Article  CAS  Google Scholar 

  • Xu P, Marsafari M, Zha J, Koffas M (2020a) Microbial coculture for flavonoid synthesis. Trends Biotechnol 38:686–688

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dong Y, Yu Y, Xing Y, Li X, Zhang X, Hou X, Sun X (2020b) Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plants under differential biotic stresses. Sci Rep 10:2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Wu Y, Xiong F, Zhang Y, Liang H, Pan Y, Dai G, Deng G, Li D (2019) Identification of anthocyanin biosynthesis genes in rice pericarp using PCAMP. Plant Biotech J 17:1700–1702

    Article  Google Scholar 

  • Yang S, Shi Y, Zou L, Huang J, Shen L, Wang Y, Guan D, He S (2020) Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses. Plant Cell Physiol 61:1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Grotewold E (2020) Plant specialized metabolism. Plant Sci 298:110579

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zeng X, Shi J, Xu Q, Wang Y, Jabu D, Sang Z, Nyima T (2018) Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan Hulless Barley. Biomed Res Int 2018:9415409

    PubMed  PubMed Central  Google Scholar 

  • Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak G (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuluaga AP, Sole M, Lu H, Gongora-Castillo E, Vaillancourt B, Coll N, Buell CR, Valls M (2015) Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genom 16:246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is supported by “the Fundamental Research Funds for the Central Universities” and National Natural Science Foundation of China (31700590). The supporters did not play any role in the design of the study, data collection, and analysis of the data or writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WP and DQZ conceived and designed the experiments; XHY, HJ, HXY, HQL and FX performed the experiments; XXY instructed the experiments; ZL sampled the R. solanacearum; HHY purified the R. solanacearum; XHY and HXY analyzed the data; XHY wrote the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Du Qingzhang or Pan Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 276220 kb)

Supplementary file2 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaohui, Y., Jie, H., Huixiao, Y. et al. Transcriptome and metabolome profiling in different stages of infestation of Eucalyptus urophylla clones by Ralstonia solanacearum. Mol Genet Genomics 297, 1081–1100 (2022). https://doi.org/10.1007/s00438-022-01903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01903-4

Keywords

Navigation