Skip to main content

Advertisement

Log in

Blood transcriptome analysis revealed the immune changes and immunological adaptation of wildness training giant pandas

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The giant panda (Ailuropoda melanoleuca) is a global flagship species for biodiversity conservation. As the time for captive giant pandas to be released into the wild matures, wildness training is provided to allow adaptation to their natural environment. It is assumed that changes in the immune system would be integral in this adaptation from captive to wild, where many more pathogens would be encountered in their natural habitats. Therefore, this study aims to determine the expression changes of immune-related genes and their potential as immunoassay markers for adaptation monitoring in wildness training giant pandas, and then to understand the adaptation strategy of wildness training giant pandas to the wild environment, thereby improving the success rate of panda reintroduction. We obtained 300 differentially expressed genes (DEGs) by RNA-seq, with 239 up-regulated and 61 down-regulated DEGs in wildness training giant pandas compared to captive pandas. Functional enrichment analysis indicated that up-regulated DEGs were enriched in several immune-related terms and pathways. There were 21 immune-related DEGs, in which most of them were up-regulated in wildness training giant pandas, including several critical innate and cellular immune genes. IL1R2 was the most significantly up-regulated gene and is a signature of homeostasis within the immune system. In the protein–protein interaction (PPI) analysis, CXCL8, CXCL10, and CCL5 were identified as the hub immune genes. Our results suggested that wildness training giant pandas have stronger innate and cellular immunity than captive giant pandas, and we proposed that a gene set of CXCL8, CXCL10, CCL5, CD3D, NFKBIA, TBX21, IL12RB2, and IL1R2 may serve as potential immunoassay markers to monitor and assess the immune status of wildness training giant pandas. Our study offers the first insight into immune alterations of wildness training giant pandas, paving the way for monitoring and evaluating the immune status of giant pandas when reintroducing them into the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data accessibility

The data that support the findings of this study have been deposited into CNGB Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) (Chen et al. 2020) with accession number CNP0001623.

References

  • Administration NFaG (2015) The results of the fourth national panda survey have been released. http://www.forestry.gov.cn/main/72/content-742880.html

  • Allard S, Fuller G, Torgerson-White L, Starking MD, Yoder-Nowak T (2019) Personality in zoo-hatched blanding’s turtles affects behavior and survival after reintroduction into the wild. Front Psychol 10:2324

    Article  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu AM (2018) Memory responses by natural killer cells. J Leukoc Biol 104:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Beck MW (2017) ggord: ordination Plots with ggplot2. R package version 1.0.0. https://zenodo.org/badge/latestdoi/35334615

  • Bessis N, Guery L, Mantovani A, Vecchi A, Sims JE, Fradelizi D, Boissier MC (2000) The type II decoy receptor of IL-1 inhibits murine collagen-induced arthritis. Eur J Immunol 30:867–875

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, Berger P, Desborough V, Smith T, Campbell J, Thomson E, Monteiro R, Guimaraes P, Walters B, Wiser J, Butte AJ (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol Res 58:234–239

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen JM, Hu ZC, Zalocusky KA, Shankar RD, Shen-Orr SS, Thomson E, Wiser J, Butte AJ (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 2018:5

    Google Scholar 

  • Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125:S33–S40

    Article  PubMed  Google Scholar 

  • Burunat-Perez G, Suarez-Rancel M, Molina-Borja M (2018) Predator avoidance training of the endangered lizard from El Hierro (Canary Islands): a new management strategy before reintroduction into the wild. Behav Process 157:192–198

    Article  Google Scholar 

  • Chen FZ, You LJ, Yang F, Wang LN, Guo XQ, Gao F, Hua C, Tan C, Fang L, Shan RQ, Zeng WJ, Wang B, Wang R, Xu X, Wei XF (2020) CNGBdb: china national genebank Database. Yi Chuan 42:799–809

    PubMed  Google Scholar 

  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014:8

    Google Scholar 

  • Connelley TK, Degnan K, Longhi CW, Morrison WI (2014) Genomic analysis offers insights into the evolution of the bovine TRA/TRD locus. BMC Genomics 15:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronkite DA, Strutt TM (2018) The regulation of inflammation by innate and adaptive lymphocytes. J Immunol Res 2018:1467538

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685

    Article  PubMed  Google Scholar 

  • Devalapalli AP, Lesher A, Shieh K, Solow JS, Everett ML, Edala AS, Whitt P, Long RR, Newton N, Parker W (2006) Increased levels of IgE and autoreactive, polyreactive IgG in wild rodents: implications for the hygiene hypothesis. Scand J Immunol 64:125–136

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Andres J, Joosten LA, Netea MG (2019) Induction of innate immune memory: the role of cellular metabolism. Curr Opin Immunol 56:10–16

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Flavell RA (2000) Control of T helper cell differentiation—in search of master genes. Sci STKE 2000:pe1

    Article  CAS  PubMed  Google Scholar 

  • Doucey MA, Laurence G, Naeher D, Michielin O, Baumgartner P, Guillaume P, Palmer E, Luescher IF (2003) CD3 delta establishes a functional link between the T cell receptor and CD8. J Biol Chem 278:3257–3264

    Article  CAS  PubMed  Google Scholar 

  • Flies AS, Mansfield LS, Grant CK, Weldele ML, Holekamp KE (2015) Markedly elevated antibody responses in wild versus captive spotted hyenas show that environmental and ecological factors are important modulators of immunity. PLoS ONE 2015:10

    Google Scholar 

  • Gelling M, Montes I, Moorhouse TP, Macdonald DW (2010) Captive housing during water vole (Arvicola terrestris) reintroduction: does short-term social stress impact on animal welfare? PLoS ONE 5:e9791–e9791

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J (1998) The release and protection of giant pandas. J Sichuan Teachers Coll Natural Sci Ed 19:257–260

    Google Scholar 

  • Kang DW, Li JQ (2018) Role of nature reserves in giant panda protection. Environ Sci Pollut Res 25:4474–4478

    Article  Google Scholar 

  • Khan IA (2015) CD8+ T cell immune response against non-viral pathogens. Semin Immunopathol 37:209–210

    Article  PubMed  Google Scholar 

  • Khan IA, Casciotti L (1999) IL-15 prolongs the duration of CD8+ T cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J Immunol 163:4503–4509

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Landmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357-U121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo BS, Baek SH, Kim G, Hwang EH, Oh H, Son Y, Lim KS, Kang P, Lee HY, Jeong KJ, Kim YH, Villinger F, Hong JJ (2020) Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J Med Primatol 49:56–59

    Article  PubMed  Google Scholar 

  • Krupa A, Fol M, Dziadek BR, Kepka E, Wojciechowska D, Brzostek A, Torzewska A, Dziadek J, Baughman RP, Griffith D, Kurdowska AK (2015) Binding of CXCL8/IL-8 to mycobacterium tuberculosis modulates the innate immune response. Mediators Inflamm 2015:124762

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S (2019) Regulation of ribosomal proteins on viral infection. Cells 2019:8

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jia A, Wang Y, Dong L, Wang Y, He Y, Wang S, Cao Y, Yang H, Bi Y, Liu G (2019) Immune effects of glycolysis or oxidative phosphorylation metabolic pathway in protecting against bacterial infection. J Cell Physiol 234:20298–20309

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147:126–132

    Article  CAS  PubMed  Google Scholar 

  • Liu BY, Li L, Lloyd H, Xia CW, Zhang YY, Zheng GM (2016) Comparing post-release survival and habitat use by captive-bred Cabot’s Tragopan (Tragopan caboti) in an experimental test of soft-release reintroduction strategies. Avian Res 2016:7

    Google Scholar 

  • Liu Y, Liu H, Bian Q (2020) Identification of potential biomarkers associated with basal cell carcinoma. Biomed Res Int 2020:2073690

    PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014:15

    Google Scholar 

  • Martin SF (2014) Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 71:4115–4130

    Article  CAS  PubMed  Google Scholar 

  • Martin-Wintle MS, Kersey DC, Wintle NJP, Aitken-Palmer C, Owen MA, Swaisgood RR (2019) Comprehensive breeding techniques for the Giant Panda. Reprod Sci Anim Conserv 1200:275–308

    Article  Google Scholar 

  • Meier SA, Fassbinder-Orth CA, Karasov WH (2013) Ontogenetic changes in innate immune function in captive and wild subspecies of prairie-chickens (Tympanuchus cupido spp.). J Wildl Manag 77:633–638

    Article  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566-570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkov I, Popov Aleksandrov A, Subota V, Kataranovski D, Kataranovski M (2018) Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation. Integr Zool 13:180–193

    Article  PubMed  Google Scholar 

  • Mohr S, Liew CC (2007) The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 13:422–432

    Article  CAS  PubMed  Google Scholar 

  • Mora-Buch R, Dotti I, Planell N, Calderon-Gomez E, Jung P, Masamunt MC, Llach J, Ricart E, Batlle E, Panes J, Salas A (2016) Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis. Mucosal Immunol 9:950–959

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni L, Song C, Wu X, Zhao X, Wang X, Li B, Gan Y (2019) RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection. PeerJ 7:e7900

    Article  PubMed  PubMed Central  Google Scholar 

  • Orange JS, Wang BP, Terhorst C, Biron CA (1995) Requirement for natural-killer cell-produced interferon-gamma in defense against murine cytomegalovirus-infection and enhancement of this defense pathway by interleukin-12 administration. J Exp Med 182:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Park AY, Scott P (2001) Il-12: keeping cell-mediated immunity alive. Scand J Immunol 53:529–532

    Article  CAS  PubMed  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 2012:7

    Google Scholar 

  • Paul WE, Zhu J (2010) How are T(H)2-type immune responses initiated and amplified? Nature reviews. Immunology 10:225–235

    CAS  PubMed  Google Scholar 

  • Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12:500–508

    Article  CAS  PubMed  Google Scholar 

  • Peters VA, Joesting JJ, Freund GG (2013) IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun 32:1–8

    Article  CAS  PubMed  Google Scholar 

  • Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O (2018) The role of cytokines in T-cell memory in health and disease. Immunol Rev 283:176–193

    Article  CAS  PubMed  Google Scholar 

  • Rauschmayr T, Groves RW, Kupper TS (1997) Keratinocyte expression of the type 2 interleukin 1 receptor mediates local and specific inhibition of interleukin 1-mediated inflammation. Proc Natl Acad Sci USA 94:5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richer MJ, Pewe LL, Hancox LS, Hartwig SM, Varga SM, Harty JT (2015) Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest 125:3477–3490

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringner M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    Article  CAS  PubMed  Google Scholar 

  • Russo RC, Garcia CC, Teixeira MM, Amaral FA (2014) The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 10:593–619

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel SK, Singh UP, Singh S, Taub DD, Igietseme JU, Lillard JW Jr (2008) CCL5 regulation of mucosal chlamydial immunity and infection. BMC Microbiol 8:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T, Shen X, Gao G (2019) Gene expression profiles of peripheral blood monocytes in osteoarthritis and analysis of differentially expressed genes. Biomed Res Int 2019:4291689

    Article  PubMed  PubMed Central  Google Scholar 

  • Stobie L, Gurunathan S, Prussin C, Sacks DL, Glaichenhaus N, Wu CY, Seder RA (2000) The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci USA 97:8427–8432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL (2011) NK cells and immune “memory.” J Immunol (baltim, Md 1950) 186:1891–1897

    Article  CAS  Google Scholar 

  • Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL (2012) Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med 209:947–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cheng F, Hu J, Wang H, Tan N, Li S, Wang X (2018) Pathway-based gene-gene interaction network modelling to predict potential biomarkers of essential hypertension. Biosystems 172:18–25

    Article  CAS  PubMed  Google Scholar 

  • Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS, Ryman KD, Klimstra WB (2018) The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere 2018:3

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H (2016) ggpubr: 'ggplot2' based publication ready plots. https://github.com/kassambara/ggpubr

  • Willoughby JR, Christie MR (2019) Long-term demographic and genetic effects of releasing captive-born individuals into the wild. Conserv Biol 33:377–388

    Article  PubMed  Google Scholar 

  • Yang H, Leng X, Du H, Luo J, Wu J, Wei Q (2020) Adjusting the prerelease gut microbial community by diet training to improve the postrelease fitness of captive-bred Acipenser dabryanus. Front Microbiol 11:488

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Y, Gu W, He L, Sun B (2014) Th1/Th2 cell’s function in immune system. Adv Exp Med Biol 841:45–65

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Katagiri T, Kondo H, Hirono I (2015) Comparative analysis of two types of CXCL8 from Japanese flounder (Paralichthys olivaceus). Dev Comp Immunol 52:37–47

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Menche J, Barabasi AL, Sharma A (2014) Human symptoms-disease network. Nat Commun 5:4212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank Dr. Megan Price for providing language help.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31570534), and the State Forestry Administration (GH201709).

Author information

Authors and Affiliations

Authors

Contributions

MY and YH coordinated and performed the research. Miao Yang analyzed the data, prepared all figures, and wrote the manuscript. BY and XZ conceived and designed the study. HW, CL, and SL provided the blood samples and contributed new methods. JS and HS provided important help in the revision of the manuscript. All the authors conceived the study and approved the final version of the manuscript.

Corresponding author

Correspondence to Xiuyue Zhang.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Ethical approval

All sample collection protocols were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee guidelines of Sichuan University (Grant No: 20190506001).

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Huang, Y., Wu, H. et al. Blood transcriptome analysis revealed the immune changes and immunological adaptation of wildness training giant pandas. Mol Genet Genomics 297, 227–239 (2022). https://doi.org/10.1007/s00438-021-01841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01841-7

Keywords

Navigation