Skip to main content

Advertisement

Log in

Integrated analysis of miRNA and mRNA transcriptomic reveals antler growth regulatory network

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The growth of antler is driven by endochondral ossification in the growth center of the apical region. Antler grows faster than cancer tissues, but it can be stably regulated and regenerated periodically. To elucidate the molecular mechanisms of how antler grows rapidly without carcinogenesis, in this study, we used RNA-seq technology to evaluate the changes of miRNA and mRNA profiles in antler at four different developmental stages, including 15, 60, 90, and 110 days. We identified a total of 55004 unigenes and 246 miRNAs of which, 10182, 13258, 10740 differentially expressed (DE) unigenes and 35, 53, 27 DE miRNAs were identified in 60-day vs. 15-day, 90-day vs. 60-day, and 110-day vs. 90-day. GO and KEGG pathway analysis indicated that DE unigenes and DE miRNA were mainly associated with chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely related to antler growth. The interaction networks of mRNA–mRNA and miRNA–mRNA related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler were constructed. The results indicated that mRNAs (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX, etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p, etc.) might have key roles in chondrogenesis and osteogenesis of antler. As well as mRNA (TP53, Tpm3 and ATP1A1, etc.) and miRNA (miR-106a, miR-145, miR-1260b and miR-2898, etc.) might play important roles in inhibiting the carcinogenesis of antler. In summary, we constructed the mRNA–mRNA and miRNA–mRNA regulatory networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler, and identified key candidate mRNAs and miRNAs among them. Further developments and validations may provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akiyama H (2011) Transcriptional regulation in chondrogenesis by Sox9. Clin Calcium 21(6):845–851

    CAS  PubMed  Google Scholar 

  • Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 29(4):390–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Ba H, Wang D, Li C (2016) MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration. Mol Genet Genom 291(2):943–955

    Article  CAS  Google Scholar 

  • Bana NA, Nyiri A, Nagy J, Frank K, Nagy T, Steger V, Schiller M, Lakatos P, Sugar L, Horn P, Barta E, Orosz L (2018) The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes. Mol Genet Genom 293(3):665–684

    Article  CAS  Google Scholar 

  • Bi Y, Stuelten CH, Kilts T, Wadhwa S, Iozzo RV, Robey PG, Chen XD, Young MF (2005) Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 280(34):30481–30489

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater LC, Lefebvre V, de Crombrugghe B (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273(24):14998–15006

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA, Bubenik AB (1990) Horns, pronghorns, and antlers. Springer, New York

    Book  Google Scholar 

  • Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S (2014) The SCF/c-KIT system in the male: survival strategies in fertility and cancer. Mol Reprod Dev 81(12):1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P, Bianco P, Jorgensen C (2011) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev Rep 7(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y (2017) Effects of Osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord 18(1):423

    Article  PubMed  PubMed Central  Google Scholar 

  • de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19(5):389–394

    Article  PubMed  Google Scholar 

  • Delany AM, Kalajzic I, Bradshaw AD, Sage EH, Canalis E (2003) Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology 144(6):2588–2596

    Article  CAS  PubMed  Google Scholar 

  • Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Le Merrer M, Munnich A, Vekemans M, Bonaventure J (1998) Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 77(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Desouza-Armstrong M, Gunning PW, Stehn JR (2017) Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 74(6):233–248

    Article  CAS  Google Scholar 

  • Du X, Xie Y, Xian CJ, Chen L (2012) Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 227(12):3731–3743

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Duan D, Wei W, Sun Z, Xu H, Guo L, Wu X (2019) MiR-19b-3p attenuates IL-1beta induced extracellular matrix degradation and inflammatory injury in chondrocytes by targeting GRK6. Mol Cell Biochem 459(1–2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Duval E, Leclercq S, Elissalde JM, Demoor M, Galera P, Boumediene K (2009) Hypoxia-inducible factor 1alpha inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1alpha-dependent redifferentiation of chondrocytes. Arthritis Rheum 60(10):3038–3048

    Article  CAS  PubMed  Google Scholar 

  • Ehlen HW, Chinenkova M, Moser M, Munter HM, Krause Y, Gross S, Brachvogel B, Wuelling M, Kornak U, Vortkamp A (2013) Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res 28(2):246–259

    Article  CAS  PubMed  Google Scholar 

  • Genetos DC, Wong A, Weber TJ, Karin NJ, Yellowley CE (2014) Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells. PLoS ONE 9(9):e107482

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths R, Woods S, Cheng A, Wang P, Griffiths-Jones S, Ronshaugen M, Kimber SJ (2020) The transcription factor-microRNA regulatory network during hESC-chondrogenesis. Sci Rep 10(1):4744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyurjan I Jr, Molnar A, Borsy A, Steger V, Hackler L Jr, Zomborszky Z, Papp P, Duda E, Deak F, Lakatos P, Puskas LG, Orosz L (2007) Gene expression dynamics in deer antler: mesenchymal differentiation toward chondrogenesis. Mol Genet Genom 277(3):221–235

    Article  CAS  Google Scholar 

  • Heilig J, Paulsson M, Zaucke F (2016) Insulin-like growth factor 1 receptor (IGF1R) signaling regulates osterix expression and cartilage matrix mineralization during endochondral ossification. Bone 83:48–57

    Article  CAS  PubMed  Google Scholar 

  • Hinz N, Jucker M (2019) Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 17(1):154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Meng X, Lu T, Wu L, Li T, Li M, Tian Y (2013) MicroRNA1 inhibits the proliferation of Chinese sika deerderived cartilage cells by binding to the 3’-untranslated region of IGF1. Mol Med Rep 8(2):523–528

    Article  PubMed  Google Scholar 

  • Hu W, Li T, Hu R, Wu L, Li M, Meng X (2014a) MicroRNA let-7a and let-7f as novel regulatory factors of the sika deer (Cervus nippon) IGF-1R gene. Growth Factors 32(1):27–33

    Article  PubMed  Google Scholar 

  • Hu W, Li T, Wu L, Li M, Meng X (2014b) Identification of microRNA-18a as a novel regulator of the insulin-like growth factor-1 in the proliferation and regeneration of deer antler. Biotechnol Lett 36(4):703–710

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Li M, Hu R, Li T, Meng X (2015) microRNA-18b modulates insulin-like growth factor-1 expression in deer antler cell proliferation by directly targeting its 3’ untranslated region. DNA Cell Biol 34(4):282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Wang T, Liu H, Xu J, Wang L, Zhao P, Xing X (2019) Full-length transcriptome and microRNA sequencing reveal the specific gene-regulation network of velvet antler in sika deer with extremely different velvet antler weight. Mol Genet Genom 294(2):431–443

    Article  CAS  Google Scholar 

  • Huang Z, Cai Z, Qian J, Wang J, Hu N (2020) Effect of micro RNA-335-5p regulating bone morphogenetic protein 2 on osteogenic differentiation of human bone marrow mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 34(6):781–786

    PubMed  Google Scholar 

  • Jia BY, Ba HX, Wang GW, Yang Y, Cui XZ, Peng YH, Zheng JJ, Xing XM, Yang FH (2016) Transcriptome analysis of sika deer in China. Mol Genet Genom 291(5):1941–1953

    Article  CAS  Google Scholar 

  • Jiang WY, Xing C, Wang HW, Wang W, Chen SZ, Ning LF, Xu X, Tang QQ, Huang HY (2018) A Lox/CHOP-10 crosstalk governs osteogenic and adipogenic cell fate by MSCs. J Cell Mol Med 22(10):5097–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson N, Saarialho-Kere U, Airola K, Herva R, Nissinen L, Westermarck J, Vuorio E, Heino J, Kahari VM (1997) Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn 208(3):387–397

    Article  CAS  PubMed  Google Scholar 

  • Kaspiris A, Mikelis C, Heroult M, Khaldi L, Grivas TB, Kouvaras I, Dangas S, Vasiliadis E, Liote F, Courty J, Papadimitriou E (2013) Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the serum, cartilage and subchondral bone of patients with osteoarthritis. Jt Bone Spine 80(4):407–413

    Article  CAS  Google Scholar 

  • Kim S, Jeong S (2019) Mutation hotspots in the beta-catenin gene: lessons from the human cancer genome databases. Mol Cells 42(1):8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JA, Choi YA, Yun HS, Bae YC, Shin HI, Park EK (2016) Extracellular calcium-binding peptide-modified ceramics stimulate regeneration of calvarial bone defects. Tissue Eng Regen Med 13(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Chen ZT (2019) MiR-146a regulates osteogenic differentiation and proliferation of bone marrow stromal cells in traumatic femoral head necrosis. Eur Rev Med Pharmacol Sci 23(2):441–448

    CAS  PubMed  Google Scholar 

  • Lamprou M, Kaspiris A, Panagiotopoulos E, Giannoudis PV, Papadimitriou E (2014) The role of pleiotrophin in bone repair. Injury 45(12):1816–1823

    Article  PubMed  Google Scholar 

  • Li C, Clark DE, Lord EA, Stanton JA, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268(2):125–130

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhao H, Liu Z, McMahon C (2014) Deer antler–a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 56:111–122

    Article  PubMed  Google Scholar 

  • Li M, Wang J, Wang C, Xia L, Xu J, Xie X, Lu W (2020) Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 394(1):112153

    Article  CAS  PubMed  Google Scholar 

  • Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF (2004) Expression and function of periostin-isoforms in bone. J Cell Biochem 92(5):1044–1061

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Wan Y, Cao J, Zhu X, Yu J, Zhou R, Yao Y, Zhang L, Zhao H, Li H, Zhao J, He L, Ma G, Yang X, Yao Z, Guo X (2013) Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone 53(2):566–574

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Sun Y, Zhang Y (2015) MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med Sci Monit 21:1527–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS (2017) Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 63:32–48

    Article  CAS  PubMed  Google Scholar 

  • Mollazadeh S, Fazly Bazzaz BS, Neshati V, de Vries AAF, Naderi-Meshkin H, Mojarad M, Mirahmadi M, Neshati Z, Kerachian MA (2019) Overexpression of MicroRNA-148b-3p stimulates osteogenesis of human bone marrow-derived mesenchymal stem cells: the role of MicroRNA-148b-3p in osteogenesis. BMC Med Genet 20(1):117

    Article  PubMed  PubMed Central  Google Scholar 

  • Molnar A, Gyurjan I, Korpos E, Borsy A, Steger V, Buzas Z, Kiss I, Zomborszky Z, Papp P, Deak F, Orosz L (2007) Identification of differentially expressed genes in the developing antler of red deer Cervus elaphus. Mol Genet Genom 277(3):237–248

    Article  CAS  Google Scholar 

  • Muir PD, Sykes AR, Barrell GK (1987) Growth and mineralisation of antlers in red deer (Cervus elaphus). N Z J Agric Res 30(3):205–215

    Article  Google Scholar 

  • Mukherjee A, Wilson EM, Rotwein P (2010) Selective signaling by Akt2 promotes bone morphogenetic protein 2-mediated osteoblast differentiation. Mol Cell Biol 30(4):1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Kho DH, Yanagawa T, Harazono Y, Gao X, Hogan V, Raz A (2014) Galectin-3 inhibits osteoblast differentiation through notch signaling. Neoplasia 16(11):939–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Yamamoto K, He X, Otsuki B, Kim Y, Murao H, Soeda T, Tsumaki N, Deng JM, Zhang Z, Behringer RR, Crombrugghe B, Postlethwait JH, Warman ML, Nakamura T, Akiyama H (2011) Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun 2:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Paskulin D, Paixao-Cortes VR, Hainaut P, Bortolini MC, Ashton-Prolla P (2012) The TP53 fertility network. Genet Mol Biol 35(4 (suppl)):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock JD, Huk DJ, Ediriweera HN, Lincoln J (2011) Sox9 transcriptionally represses Spp1 to prevent matrix mineralization in maturing heart valves and chondrocytes. PLoS ONE 6(10):e26769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC (2015) Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 100(2):E325-332

    Article  CAS  PubMed  Google Scholar 

  • Rutkovskiy A, Stenslokken KO, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Seghatoleslami MR, Lichtler AC, Upholt WB, Kosher RA, Clark SH, Mack K, Rowe DW (1995) Differential regulation of COL2A1 expression in developing and mature chondrocytes. Matrix Biol 14(9):753–764

    Article  CAS  PubMed  Google Scholar 

  • Shen WC, Lai YC, Li LH, Liao K, Lai HC, Kao SY, Wang J, Chuong CM, Hung SC (2019) Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat Commun 10(1):2226

    Article  PubMed  PubMed Central  Google Scholar 

  • Steger V, Molnar A, Borsy A, Gyurjan I, Szabolcsi Z, Dancs G, Molnar J, Papp P, Nagy J, Puskas L, Barta E, Zomborszky Z, Horn P, Podani J, Semsey S, Lakatos P, Orosz L (2010) Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes. Mol Genet Genom 284(4):273–287

    Article  CAS  Google Scholar 

  • Stelcer E, Kulcenty K, Rucinski M, Jopek K, Richter M, Trzeciak T, Suchorska WM (2019) The role of MicroRNAs in early chondrogenesis of human induced pluripotent stem cells (hiPSCs). Int J Mol Sci 20(18):4371

    Article  CAS  PubMed Central  Google Scholar 

  • Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, Fosang AJ, Schorpp-Kistner M, Angel P, Werb Z (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131(23):5883–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui Z, Weng Y, Zhao Q, Deng N, Fang F, Zhu X, Shan Y, Zhang L, Zhang Y (2016) Ionic liquid-based method for direct proteome characterization of velvet antler cartilage. Talanta 161:541–546

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhao X, Zhang C, Zhang Z, Lun J, Liao W, Zhang Z (2018) MiR-455-3p inhibits the degenerate process of chondrogenic differentiation through modification of DNA methylation. Cell Death Dis 9(5):537

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Sui Z, Wang D, Ba H, Zhao H, Zhang L, Li C (2020) Identification of interactive molecules between antler stem cells and dermal papilla cells using an in vitro co-culture system. J Mol Histol 51(1):15–31

    Article  PubMed  Google Scholar 

  • Tuckermann JP, Pittois K, Partridge NC, Merregaert J, Angel P (2000) Collagenase-3 (MMP-13) and integral membrane protein 2a (Itm2a) are marker genes of chondrogenic/osteoblastic cells in bone formation: sequential temporal, and spatial expression of Itm2a, alkaline phosphatase, MMP-13, and osteocalcin in the mouse. J Bone Miner Res 15(7):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Sun Q (2017) TP53 mutations, expression and interaction networks in human cancers. Oncotarget 8(1):624–643

    Article  PubMed  Google Scholar 

  • Wang A, Ren M, Song Y, Wang X, Wang Q, Yang Q, Liu H, Du Z, Zhang G, Wang J (2018) MicroRNA expression profiling of bone marrow mesenchymal stem cells in steroid-induced osteonecrosis of the femoral head associated with osteogenesis. Med Sci Monit 24:1813–1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang C, Wang N, Li Z, Heller R, Liu R, Zhao Y, Han J, Pan X, Zheng Z, Dai X, Chen C, Dou M, Peng S, Chen X, Liu J, Li M, Wang K, Liu C, Lin Z, Chen L, Hao F, Zhu W, Song C, Zhao C, Zheng C, Wang J, Hu S, Li C, Yang H, Jiang L, Li G, Liu M, Sonstegard TS, Zhang G, Jiang Y, Wang W, Qiu Q (2019) Genetic basis of ruminant headgear and rapid antler regeneration. Science 364(6446):eaav6335

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Teng Z, Liu X, Liu X, Kong C, Lu S (2020) The COL6A1 rs201153092 single nucleotide polymorphism, associates with thoracic ossification of the posterior longitudinal ligament. Mol Med Rep 21(1):191–200

    PubMed  Google Scholar 

  • Weng J, Peng W, Zhu S, Chen S (2017) Long noncoding RNA sponges miR-454 to promote osteogenic differentiation in maxillary sinus membrane stem cells. Implant Dent 26(2):178–186

    Article  PubMed  Google Scholar 

  • Wu R, Ruan J, Sun Y, Liu M, Sha Z, Fan C, Wu Q (2018a) Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells (ASCs) osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway. Stem Cell Res Ther 9(1):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZH, Huang KH, Liu K, Wang GT, Sun Q (2018b) DGCR5 induces osteogenic differentiation by up-regulating Runx2 through miR-30d-5p. Biochem Biophys Res Commun 505(2):426–431

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Cao F, Zhou W, Wang G, Liu G, Xia T, Liu M, Mi B, Liu Y (2020a) Long noncoding RNA FAM83H-AS1 modulates SpA-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Mol Cell Biol 40(5):e00362-19

  • Wu L, Song J, Xue J, Xiao T, Wei Q, Zhang Z, Zhang Y, Li Z, Hu Y, Zhang G, Xia H, Li J, Yang X, Liu Q (2020b) MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells. Toxicol Lett 331:159–166

    Article  CAS  PubMed  Google Scholar 

  • Xiaoling G, Shuaibin L, Kailu L (2020) MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Med Genet 21(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue D, Zhang W, Chen E, Gao X, Liu L, Ye C, Tan Y, Pan Z, Li H (2017) Local delivery of HMGB1 in gelatin sponge scaffolds combined with mesenchymal stem cell sheets to accelerate fracture healing. Oncotarget 8(26):42098–42115

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao B, Zhang M, Liu M, Wang Q, Liu M, Zhao Y (2018) Sox9 functions as a master regulator of antler growth by controlling multiple cell lineages. DNA Cell Biol 37(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Yao B, Zhang M, Liu M, Lu B, Leng X, Hu Y, Zhao D, Zhao YU (2019) Identification of the miRNA-mRNA regulatory network of antler growth centers. J Biosci 44(1)

  • Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F, Xiao H (2019) MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett 24:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Zhao J (2019) Modulated autophagy by MicroRNAs in osteoarthritis chondrocytes. Biomed Res Int 2019:1484152

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wei QS, Ding WB, Zhang LL, Wang HC, Zhu YJ, He W, Chai YN, Liu YW (2017) Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS ONE 12(8):e0182678

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang P, Yang P, He Y, Wang X, Yang Y, Zhu H, Xu N, Liang S (2017) Downregulation of ATP1A1 promotes cancer development in renal cell carcinoma. Clin Proteom 14:15

    Article  CAS  Google Scholar 

  • Zhang S, Liu Y, Zheng Z, Zeng X, Liu D, Wang C, Ting K (2018) MicroRNA-223 suppresses osteoblast differentiation by inhibiting DHRS3. Cell Physiol Biochem 47(2):667–679

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen B, Li D, Zhou X, Chen Z (2019) LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract 215(3):525–531

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Ma X, Wang ZJ, Zhang WY, Jiang H, Li SD, Zhang TZ, Du J, Lu Z (2019a) Research on the establishment of a TPM3 monoclonal stable transfected PANC-1 cell line and the experiment of the EMT occurrence in human pancreatic cancer. Onco Targets Ther 12:5577–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Lu Y, Wang Y, Du L, Zhang Y, Tao J (2019b) Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1. Am J Physiol Cell Physiol 316(1):C57–C69

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Rao X, Yao W, Zou X (2018) Downregulation of MiR-196b-5p impedes cell proliferation and metastasis in breast cancer through regulating COL1A1. Am J Transl Res 10(10):3122–3132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo D, Zhao WD, Wright FA, Yang HY, Wang JP, Sears R, Baer T, Kwon DH, Gordon D, Gibbs S, Dai D, Yang Q, Spitzner J, Krahe R, Stredney D, Stutz A, Yuan B (2001) Assembly, annotation, and integration of UNIGENE clusters into the human genome draft. Genome Res 11(5):904–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank staff from the Institute of Special Economic Animals and Plants and State Key Laboratory for Molecular Biology of Special Economical Animals, Chinese Academy of Agricultural Sciences, for help in sika deer tissue collection. Illumina sequencing was performed at the Novogene Bioinformatics Technology Co., Ltd., Beijing, China. This study was funded by National Natural Science Foundation of China (Grant/Award number: 32002171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Du or Hengxing Ba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Antler tips were collected from anesthetized sika deer in strict accordance approved by the ethics committee of Jilin Agricultural University.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Suppl. Fig. 1 Characterization of miRNA-seq mapped reads from the small RNA sequencing of antler. (TIF 131 KB)

Suppl. Fig. 2 The top 20 GO categories of DE unigenes in each comparable group. (TIF 1317 KB)

Suppl. Fig. 3 The top 20 enriched KEGG pathways of DE unigenes in each comparable group. (TIF 566 KB)

Suppl. Fig. 4 The top 20 enriched GO terms for the potential genes targeted by DE miRNAs. (TIF 1698 KB)

Suppl. Fig.5 The top 20 enriched KEGG pathways for the potential genes targeted by DE miRNAs. (TIF 465 KB)

Supplementary Data 1. Summary of transcriptome data. (XLS 20 KB)

Supplementary Data 2. FPKM statistical of antler transcriptome in sika deer. (XLS 21 KB)

Supplementary Data 3. Summary of miRNAome data. (XLS 19 KB)

Supplementary Data 4. Statistical information of small RNAs mapping to reference sequence. (XLS 21 KB)

Supplementary Data 5. Small RNAs annotation. (XLSX 13 KB)

Supplementary Data 6. Identification of known miRNAs and novel miRNAs. (XLSX 19 KB)

Supplementary Data 7. The lists of DE unigenes. (XLS 1949 KB)

Supplementary Data 8. GO categories of differential unigenes in four growth periods. (XLS 3167 KB)

Supplementary Data 9. KEGG pathways of differential unigenes in four growth periods. (XLS 1425 KB)

Supplementary Data 10. Interaction networks of DE unigenes in each comparable group. (XLS 309 KB)

Supplementary Data 11. Known miRNA four growth periods. (XLS 45 KB)

Supplementary Data 12. The lists of DE miRNAs. (XLS 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Zhang, L., Zhang, Y. et al. Integrated analysis of miRNA and mRNA transcriptomic reveals antler growth regulatory network. Mol Genet Genomics 296, 689–703 (2021). https://doi.org/10.1007/s00438-021-01776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01776-z

Keywords

Navigation