Skip to main content
Log in

Transcription profiling and identification of infection-related genes in Phytophthora cactorum

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Phytophthora cactorum, an oomycete pathogen, infects more than 200 plant species within several plant families. To gain insight into the repertoire of the infection-related genes of P. cactorum, Illumina RNA-Seq was used to perform a global transcriptome analysis of three life cycle stages of the pathogen, mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). From over 9.8 million Illumina reads for each library, 18,402, 18,569 and 19,443 distinct genes were identified for MY, ZO and GC libraries, respectively. Furthermore, the transcriptome difference among MY, ZO and GC stages was investigated. Gene ontology (GO) and KEGG pathway enrichment analyses revealed diverse biological functions and processes. Comparative analysis identified a large number of genes that are associated with specific stages and pathogenicity, including 166 effector genes. Of them, most of RXLR and NLP genes showed induction while the majority of CRN genes were down-regulated in GC, the important pre-infection stage, compared to either MY or ZO. And 14 genes encoding small cysteine-rich (SCR) secretory proteins showed differential expression during the developmental stages and in planta. Ectopic expression in the Solanaceae indicated that SCR113 and one elicitin PcINF1 can trigger cell death on Nicotiana benthamiana, tobacco (N. tabacum) and tomato (Solanum lycopersicum) leaves. Neither conserved domain nor homologues of SCR113 in other organisms can be identified. Collectively, our study provides a comprehensive examination of gene expression across three P. cactorum developmental stages and describes pathogenicity-related genes, all of which will help elucidate the pathogenicity mechanism of this destructive pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ah-Fong AM, Kim KS, Judelson HS (2017) RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genom 18:198

    Article  Google Scholar 

  • Asmann YW, Wallace B, Thompson EA (2008) Transcriptome profiling using next-generation sequencing. Gastroenterology 135:1466–1468

    Article  CAS  PubMed  Google Scholar 

  • Buchan DWA, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucl Acids Res 41(W1):W349–W357

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Kurgan LA (2007) PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 23(21):2843–2850

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Klemsdal SS, Brurberg MB (2011) Identification and analysis of Phytophthora cactorum genes up-regulated during cyst germination and strawberry infection. Curr Genet 57:297–315

    Article  CAS  PubMed  Google Scholar 

  • Chen XR, Xing YP, Li YP, Tong YH, Xu JY (2013) RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici. PLoS One 8:e74588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XR, Zhang BY, Xing YP, Li QY, Li YP, Tong YH, Xu JY (2014) Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors. BMC Genom 15:980

    Article  Google Scholar 

  • Chen XR, Brurberg MB, Elameen A, Klemsdal SS, Martinussen I (2016a) Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum. Mol Genet Genom 291(5):1967–1978

    Article  CAS  Google Scholar 

  • Chen XR, Li YP, Li QY, Xing YP, Liu BB, Tong YH, Xu JY (2016b) SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance. Mol Plant Pathol 17(4):577–587

    Article  CAS  PubMed  Google Scholar 

  • Davik J, Eikemo H, Brurberg MB, Sargent DJ (2015) Mapping of the RPc-1 locus for Phytophthora cactorum resistance in Fragaria vesca. Mol Breed 35:211

    Article  Google Scholar 

  • Eikemo H, Stensvand A (2015) Resistance of strawberry genotypes to leather rot and crown rot caused by Phytophthora cactorum. Eur J Plant Pathol 143:407–413

    Article  Google Scholar 

  • Eikemo H, Brurberg MB, Davik J (2010) Resistance to Phytophthora cactorum in diploid Fragaria species. Hortic Sci 45:193–197

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society, St. Paul

    Google Scholar 

  • Farzaneh M, Sharifi-Tehrani A, Ahmadzadeh M, Zad J (2007) Biocontrol of Phytophthora cactorum the causal agent of root and crown rot on apple (Malus domestica) by formulated Pseudomonas fluorescens. Commun Agric Appl Biol Sci 72(4):891–900

    CAS  PubMed  Google Scholar 

  • Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ (2017) Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol Mol Biol Rev 81(2):e00066–e00016

    Article  PubMed  Google Scholar 

  • Grenville-Briggs LJ, Kushwaha SK, Cleary MR, Witzell J, Savenkov EI, Whisson SC, Chawade A, Vetukuri RR (2017) Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech (Fagus sylvatica). Genom Data 12:155–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Hao DC, Ge G, Xiao P, Zhang Y, Yang L (2011) The first insight into the tissue specific Taxus transcriptome via illumina second generation sequencing. PLoS One 6:e21220

    Article  CAS  PubMed Central  Google Scholar 

  • Hardham AR (2007) Cell biology of plant–oomycete interactions. Cell Microbiol 9:31–39

    Article  CAS  PubMed  Google Scholar 

  • Huet JC, Mansion M, Pernollet JC (1993) Amino acid sequence of the α-elicitin secreted by Phytophthora cactorum. Phytochemistry 34:1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judelson HS, Ah-Fong AM, Aux G et al (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433–447

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S, Furzer O, Jones JD et al (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434

    Article  PubMed  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroon LP, Brouwer H, de Cock AW, Govers F (2012) The genus Phytophthora anno 2012. Phytopathology 102(4):348–364

    Article  PubMed  Google Scholar 

  • Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K (2015) Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39(3):213–220

    Article  CAS  PubMed  Google Scholar 

  • Lévesque CA, Brouwer H, Cano L et al (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Bos JI, Armstrong M et al (2005) Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 22:659–672

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhu L, Song T et al (2017) A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355(6326):710–714

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nicastro G, Orsomando G, Ferrari E et al (2009) Solution structure of the phytotoxic protein PcF: the first characterized member of the Phytophthora PcF toxin family. Protein Sci 18:1786–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SK, Young C, Lee M et al (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsomando G, Lorenzi M, Raffaelli N, Dalla Rizza M, Mezzetti B, Ruggieri S (2001) Phytotoxic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J Biol Chem 276:21578–21584

    Article  CAS  PubMed  Google Scholar 

  • Orsomando G, Lorenzi M, Ferrari E, de Chiara C, Spisni A, Ruggieri S (2003) PcF protein from Phytophthora cactorum and its recombinant homologous elicit phenylalanine ammonia lyase activation in tomato. Cell Mol Life Sci 60:1470–1476

    Article  CAS  PubMed  Google Scholar 

  • Orsomando G, Brunetti L, Pucci K, Ruggeri B, Ruggieri S (2011) Comparative structural and functional characterization of putative protein effectors belonging to the PcF toxin family from Phytophthora spp. Protein Sci 20:2047–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulin MM, Novinscak A, St-Arnaud M et al (2009) Transcriptional activity of antifungal metabolite-encoding genes phlD and hcnBC in Pseudomonas spp. using qRT-PCR. FEMS Microbiol Ecol 68:212–222

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Win J, Cano LM, Kamoun S (2010) Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genom 11:637

    Article  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genom 12:159–162

    Article  CAS  Google Scholar 

  • Savidor A, Donahoo RS, Hurtado-Gonzales O, Land ML, Shah MB, Lamour KH, McDonald WH (2008) Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and Phytophthora ramorum. Mol Cell Proteom 7:1501–1516

    Article  CAS  Google Scholar 

  • Schornack S, Huitema E, Cano LM et al (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–803

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Marshall JS, Hardham AR (2004) Gene expression in germinated cysts of Phytophthora nicotianae. Mol Plant Pathol 5:317–330

    Article  CAS  PubMed  Google Scholar 

  • Stassen JH, Van den Ackerveken G (2011) How do oomycete effectors interfere with plant life? Curr Opin Plant Biol 14(4):407–414

    Article  PubMed  Google Scholar 

  • Thines M, Kamoun S (2010) Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol 13:427–433

    Article  PubMed  Google Scholar 

  • Torto TA, Li S, Styer A et al (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torto-Alalibo TA, Tripathy S, Smith BM et al (2007) Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection. Mol Plant-Microbe Interact 20:781–793

    Article  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Han C, Ferreira AO et al (2011) Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23:2064–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wawra S, Belmonte R, Lobach L, Saraiva M, Willems A, van West P (2012) Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol 15:685–691

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Wulff BB, Chakrabarti A, Jones DA (2009) Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. Mol Plant Microbe Interact 22(10):1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Wang X, Tao K, Lu Y, Dai T, Dong S, Dou D, Gijzen M, Wang Y (2011) Digital gene expression profiling of the Phytophthora sojae transcriptome. Mol Plant Microbe Interact 24(12):1530–1539

    Article  CAS  PubMed  Google Scholar 

  • Zelaya-Molina LX, Ortega MA, Dorrance AE (2011) Easy and efficient protocol for oomycete DNA extraction suitable for population genetic analysis. Biotechnol Lett 33:715–720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support towards this work is from the National Natural Science Foundation of China (Nos. 31671971, 31500209), Natural Science Foundation of Yangzhou City (China) (Nos. YZ2016121, YZ2015106), the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201303018), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (15KJB210007) and the Yangzhou University 2016 Project for Excellent Young Key Teachers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ren Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Data availability

The RNA-Seq reads were deposited at the National Center for Biotechnology Information (NCBI) Sequence Read Archive database through the project accession no. SRP059996. The P. cactorum gene sequences can be accessed using the accession no. GBGX00000000 at the NCBI Transcriptome Shotgun Assembly sequence database. The gene sequences cited in the manuscript have been submitted to NCBI database with accession no. AIY34486, KM068098, MF177883 to MF177887. Other supporting data are accessible in additional files.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XR., Huang, SX., Zhang, Y. et al. Transcription profiling and identification of infection-related genes in Phytophthora cactorum . Mol Genet Genomics 293, 541–555 (2018). https://doi.org/10.1007/s00438-017-1400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1400-7

Keywords

Navigation