Skip to main content
Log in

Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Expansins are pH-dependent cell wall loosening proteins which form a large family in plants. They have been shown to be involved in various developmental processes and been implicated in enabling plants’ ability to absorb nutrients from the soil as well as conferring biotic and abiotic stress resistances. It is therefore clear that they can be potential targets in genetic engineering for crop improvement. Tobacco (Nicotiana tabacum) is a major crop species as well as a model organism. Considering that only a few tobacco expansins have been studied, a genome-wide analysis of the tobacco expansin gene family is necessary. In this study, we identified 52 expansins in tobacco, which were classified into four subfamilies: 36 NtEXPAs, 6 NtEXPBs, 3 NtEXLAs and 7 NtEXLBs. Compared to other species, the NtEXLB subfamily size was relatively larger. Phylogenetic analysis showed that the 52 tobacco expansins were divided into 13 subgroups. Gene structure analysis revealed that genes within subfamilies/subgroups exhibited similar characteristics such as gene structure and protein motif arrangement. Whole-genome duplication and tandem duplication events may have played important roles in the expanding of tobacco expansins. Cis-Acting element analysis revealed that each expansin gene was regulated or several expansin genes were co-regulated by both internal and environmental factors. 35 of these genes were identified as being expressed according to a microarray analysis. In contrast to most NtEXPAs which had higher expression levels in young organs, NtEXLAs and NtEXLBs were preferentially expressed in mature or senescent tissues, suggesting that they might play different roles in different organs or at different developmental stages. As the first step towards genome-wide analysis of the tobacco expansin gene family, our work provides solid background information related to structure, evolution and expression as well as regulatory cis-acting elements of the tobacco expansins. This information will provide a strong foundation for cloning and functional exploration of expansin genes in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K (2015) Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann Bot 115:67–80

    Article  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Dunsmuir P (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol 39:161–169

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Li X, Jiang H, Ma W, Miao W, Yamada T, Zhang M (2012) Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J 279:2431–2443

    Article  CAS  PubMed  Google Scholar 

  • Cho HT, Kende H (1997) Expansins in deepwater rice internodes. Plant Physiol 113:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civello PM, Powell AL, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000a) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000b) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downes BP, Steinbaker CR, Crowell DN (2001) Expression and processing of a hormonally regulated beta-expansin from soybean. Plant Physiol 126:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards KD, Bombarely A, Story GW, Allen F, Mueller LA, Coates SA, Jones L (2010) TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genom 11:142

    Article  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell-wall protein expansion. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99:3807–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean β-xpansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru M, Smith DL, Gross KC, Kobayashi S (2007) Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Physiol 164:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LA (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kuluev BR, Knyazev AB, YaP Lebede, Chemeris AV (2012) Morphological and physiological characteristics of transgenic tobacco plants expressing expansin Genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar. Russ J Plant Physiol 59:97–104

    Article  CAS  Google Scholar 

  • Kuluev BR, Safiullina MG, Kniazev AV, Chemeris AV (2013) Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Russ J Plant Physiol 44:28–34

    CAS  Google Scholar 

  • Kuluev BR, Knyazev AV, Nikonorov luM, Chemeris AV (2014) Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth. Genetika 50:560–569

    CAS  PubMed  Google Scholar 

  • Lee HW, Kim J (2013) EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol 54:1600–1611

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Choi DS, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li LC, Cosgrove DJ (2001) Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis. Eur J Biochem 268:4217–4226

    Article  CAS  PubMed  Google Scholar 

  • Li F, Xing SC, Guo QF, Zhao MR, Zhang J, Gao Q, Wang GP, Wang W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    Article  CAS  PubMed  Google Scholar 

  • Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W (2013) Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 163:281–291

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao J, Walk TC, Liao H (2014) Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment. Appl Microbiol Biotechnol 98:2805–2817

    Article  CAS  PubMed  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genom 12:76

    Article  CAS  Google Scholar 

  • Liu L, Xu W, Hu X, Liu H, Lin Y (2016) W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep 6:20881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YG, Liu LF, Wang X, Han ZH, Ouyang B, Zhang JH, Li HX (2016) Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol Genet Genomics 291:597–608

    Article  CAS  PubMed  Google Scholar 

  • Lü PT, Kang M, Jiang XQ, Dai FW, Gao JP, Zhang CQ (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    Article  PubMed  Google Scholar 

  • Marowa P, Ding AM, Kong YZ (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JK, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 9:5955–5960

    Article  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of β-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81:108–120

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Schippers JH, Mieulet D, Obata T, Fernie AR, Guiderdoni E, Mueller-Roeber B (2013) MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J 76:258–273

    CAS  PubMed  Google Scholar 

  • Seader VH, Thornsberry JM, Carey RE (2016) Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins. J Plant Res 129:199–207

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Xu W, Jia Y, Wang M, Xia G (2015) The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance. Plant J 84:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS One 9:e100792

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genom 9:550

    Article  Google Scholar 

  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y (2014) AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One 9:e85208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZM, Kang B, He XW, Lv SL, Bai YH, Ding WN, Chen M, Cho HT, Wu P (2011) Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734

    Article  CAS  Google Scholar 

  • Zhang SZ, Xu RR, Gao Z, Chen CT, Jiang ZH, Shu HR (2014a) A genome-wide analysis of the expansin genes in Malus × Domestica. Mol Genet Genomics 289:225–236

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yan HW, Chen WJ, Liu JY, Jiang CP, Jiang HY, Zhu SW (2014b) Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genomics 289:1061–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhao MR, Li F, Fang Y, Gao Q, Wang W (2011) Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 248:313–323

    Article  PubMed  Google Scholar 

  • Zhao MR, Han YY, Feng YN, Li F, Wang W (2012) Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep 31:671–685

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xie JN, Liao H, Wang XR (2014) Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant 150:194–204

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wu NN, Song WL, Yin GJ, Qin YJ, YAN= YM, Hu YK (2014) Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol 14:93

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhen Kong.

Ethics declarations

Funding

This study was funded by the National Key Technology R&D Program (No. 2015BAD15B03-05), the National Natural Science Foundation of China (Grant No. 31470291) and the Youth Elite Program (to YK).

Conflict of interest

All authors declare that she/he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

A. Ding and P. Marowa contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, A., Marowa, P. & Kong, Y. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol Genet Genomics 291, 1891–1907 (2016). https://doi.org/10.1007/s00438-016-1226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1226-8

Keywords

Navigation