Skip to main content

Advertisement

Log in

Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications

  • Methods Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s) for a clonally derived cell line. The current method avoids potential biases introduced through chemical modification and/or amplification methods for indirect detection of CpG methylation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arocena DG, Iwahashi CK, Won N, Beilina A, Ludwig AL, Tassone F, Schwartz PH, Hagerman PJ (2005) Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum Mol Genet 14(23):3661–3671

    Article  PubMed  CAS  Google Scholar 

  • Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569

    Article  PubMed  CAS  Google Scholar 

  • Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloglu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106(45):19096–19101

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl F, Gullberg M, Stenberg J, Landegren U, Nilsson M (2005) Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res 33(8):e71

    Article  PubMed  PubMed Central  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R (2013) Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 19(11):655–663

    Article  PubMed  CAS  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Y, He C (2012) Nucleic acid modifications with epigenetic significance. Curr Opin Chem Biol 16(5–6):516–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallagher A, Hallahan B (2012) Fragile X-associated disorders: a clinical overview. J Neurol 259(3):401–413

    Article  PubMed  CAS  Google Scholar 

  • Hagerman P (2013) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126(1):1–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagerman R, Hagerman P (2013) Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 12(8):786–798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagerman R, Hoem G, Hagerman P (2010) Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 1(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutchison CA 3rd, Smith HO, Pfannkoch C, Venter JC (2005) Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A 102(48):17332–17336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieleczawa J (2006) Fundamentals of sequencing of difficult templates—an overview. J Biomol Tech 17(3):207–217

    PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, McCalmon S, Hagerman RJ, Tassone F, Hagerman PJ (2013) Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res 23(1):121–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maga G, Villani G, Crespan E, Wimmer U, Ferrari E, Bertocci B, Hubscher U (2007) 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature 447(7144):606–608

    Article  PubMed  CAS  Google Scholar 

  • Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118

    Article  PubMed  CAS  Google Scholar 

  • Marmolino D (2011) Friedreich’s ataxia: past, present and future. Brain Res Rev 67(1–2):311–330

    Article  PubMed  CAS  Google Scholar 

  • Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940

    Article  PubMed  CAS  Google Scholar 

  • Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ (2012) The methylomes of six bacteria. Nucleic Acids Res 40(22):11450–11462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutter GL, Boynton KA (1995) PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res 23(8):1411–1418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson DL, Orr HT, Warren ST (2013) The unstable repeats–three evolving faces of neurological disease. Neuron 77(5):825–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Primerano B, Tassone F, Hagerman RJ, Hagerman P, Amaldi F, Bagni C (2002) Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations. RNA 8(12):1482–1488

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shen L, Zhang Y (2013) 5-Hydroxymethylcytosine: generation, fate, and genomic distribution. Curr Opin Cell Biol 25(3):289–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • So A, Pel J, Rajan S, Marziali A (2010) Efficient genomic DNA extraction from low target concentration bacterial cultures using SCODA DNA extraction technology. Cold Spring Harb Protoc 2010(10): pdb prot5506

  • Song CX, He C (2013) Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci 38(10):480–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I, Sekiguchi M, Radman M (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278(5335):128–130

    Article  PubMed  CAS  Google Scholar 

  • Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 66(1):6–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, Abaan HO, Albert TJ, Program NCS, Margulies EH, Green ED, Collins FS, Mullikin JC, Biesecker LG (2010) Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res 20(10):1420–1431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38(15):e159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11(10):891–905

    Article  PubMed  CAS  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the entire staff at Pacific Biosciences, in particular Leewin Chern for PCR experiments, Karl Voss for helpful discussions, and the families that have contributed to our fragile X research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah W. Hanes.

Ethics declarations

Conflict of interest

Thang T. Pham, John S. Eid, Regina Lam, Stephen W. Turner and Jeremiah W. Hanes were employed at Pacific Biosciences (manufacturer of the PacBio RS II DNA sequencing instrument used in this study) throughout the course of this study. Paul J. Hagerman is a nonremunerative collaborator with Pacific Biosciences and with Roche Diagnostics; he also holds a patent for PCR-based methods for sizing CGG repeats. All other authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was supported by the National Institutes of Health (R01HD040661 to P.J.H.).

Additional information

Communicated by S. Hohmann.

T. T. Pham and J. Yin contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T., Yin, J., Eid, J.S. et al. Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications. Mol Genet Genomics 291, 1491–1504 (2016). https://doi.org/10.1007/s00438-016-1167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1167-2

Keywords

Navigation