Skip to main content
Log in

Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2016

Abstract

The ZF-HD gene family plays an important role in plant developmental processes and stress responses. However, the function of the ZF-HD genes in Chinese cabbage remains largely unknown. Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide. The entire Chinese cabbage genome sequence has been determined, and more than forty thousand proteins have been identified to date. In this study, 31 ZF-HD genes were identified in Chinese cabbage. We show here that the BraZF-HD genes could be categorized into ZHD and MIF subfamilies. Among them, ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER genes that possess only the zinc finger. Phylogenetic analysis suggested that ZHDs have expanded considerably during angiosperm evolution. In addition, the ZHD group has 24 members, which is twice as much as the Arabidopsis ZHD group, indicating that the Chinese cabbage ZHD genes have been retained more frequently than other group genes. Real-time PCR analysis showed that most of BraZF-HD genes are preferentially expressed in flower. Furthermore, most of these genes are significantly induced under photoperiod or vernalization conditions, as well as abiotic stresses. Thereby implying that they may play important roles in these processes. This study provides insight into the evolution of ZF-HD genes in Chinese cabbage genome and may aid efforts to further characterize the function of these predicted ZF-HD genes in flowering and resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akin Z, Nazarali A (2005) Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 25(3–4):697–741

    Article  CAS  PubMed  Google Scholar 

  • Albert VA, Soltis DE et al (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariel FD, Manavella PA et al (2007) The true story of the HD-Zip family. Trends Plant Sci 12(9):419–426

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Meng Y et al (2011) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth O, Vogt S et al (2009) Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69(1–2):213–226

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19(2):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Bürglin TR (1994) A comprehensive classification of homeobox genes. Guidebook to the homeobox genes, pp 25–71

  • Cheng F, Mandáková T et al (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25(5):1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englbrecht CC, Schoof H et al (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom 5(1):39

    Article  Google Scholar 

  • Finn RD, Clements J et al (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Friedman R, Hughes AL (2001) Gene duplication and the structure of eukaryotic genomes. Genome Res 11(3):373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring WJ, Affolter M et al (1994) Homeodomain proteins. Annu Rev Biochem 63(1):487–526

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Halbach T, Scheer N et al (2000) Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res 28(18):3542–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Ma H (2006) Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. Plant J 45(3):399–422

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Wang Y et al (2003) Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol 53(4):545–563

    Article  CAS  PubMed  Google Scholar 

  • Hu W, DePamphilis CW et al (2008) Phylogenetic analysis of the plant specific zinc finger homeobox and mini zinc finger gene families. J Integr Plant Biol 50(8):1031–1045

    Article  CAS  PubMed  Google Scholar 

  • Hunter CS, Rhodes SJ (2005) LIM-homeodomain genes in mammalian development and human disease. Mol Biol Rep 32(2):67–77

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sato Y et al (2002) Involvement of homeobox genes in early body plan of monocot. Int Rev Cytol 218:1-36e

    Google Scholar 

  • Jain M, Tyagi AK et al (2008) Genome wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275(11):2845–2861

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Li X et al (2013) MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Molecules 18(7):8682–8695

    Article  CAS  PubMed  Google Scholar 

  • Klug A, Schwabe J (1995) Protein motifs 5. Zinc fingers. FASEB J 9(8):597–604

    CAS  PubMed  Google Scholar 

  • Knight CA, Vogel H et al (2006) Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Mol Ecol 15(5):1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Kosarev P, Mayer K et al (2002) Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol 3(4):0016.0011–0016.0012

    Article  Google Scholar 

  • Krishna SS, Majumdar I et al (2003) Structural classification of zinc fingers SURVEY AND SUMMARY. Nucleic Acids Res 31(2):532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Jia D et al (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13(10):2269–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress responsive and cold stress responsive gene expression in plants. Physiol Plant 126(1):62–71

    Article  CAS  Google Scholar 

  • Punta M, Coggill PC et al (2011) The Pfam protein families database. Nucleic Acids Res 49:D290–D301

    Google Scholar 

  • Schoof H, Zaccaria P et al (2002) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res 30(1):91–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Lysak MA et al (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC et al (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y et al (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom 14(1):573

    Article  CAS  Google Scholar 

  • Takatsuji H (1999) Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39(6):1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan QK-G, Irish VF (2006) The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiol 140(3):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Lyons E (2012) Unleashing the genome of Brassica rapa. Front Plant Sci 3:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas BC, Pedersen B et al (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16(7):934–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong C, Wang X et al (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14(1):689

    Article  CAS  Google Scholar 

  • Town CD, Cheung F et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18(6):1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K et al (2007) Co-expression of the stress inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63

    Article  CAS  PubMed  Google Scholar 

  • Vision TJ, Brown DG et al (2000) The origins of genomic duplications in Arabidopsis. Science 290(5499):2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Williams RW (1998) Plant homeobox genes: many functions stem from a common motif. BioEssays 20(4):280–282

    Article  CAS  PubMed  Google Scholar 

  • Windhövel A, Hein I et al (2001) Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol Biol 45(2):201–214

    Article  PubMed  Google Scholar 

  • Wolberger C (1996) Homeodomain interactions. Curr Opin Struct Biol 6(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45(4):386–391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Key Program, No. 31330067), National Program on Key Basic Research Projects (The 973 Program: 2012CB113900), and National High Technology Research and Development Program of China (863 Program, No. 2012AA100101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiLin Hou.

Additional information

Communicated by S. Hohmann.

W. Wang and P. Wu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, P., Li, Y. et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage. Mol Genet Genomics 291, 1451–1464 (2016). https://doi.org/10.1007/s00438-015-1136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1136-1

Keywords

Navigation