Skip to main content
Log in

More than just one: multiplicity of Hirudins and Hirudin-like Factors in the Medicinal Leech, Hirudo medicinalis

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Blood-sucking leeches like the medicinal leech, Hirudo medicinalis, have been used for medical purposes since ancient times. During feeding, medicinal leeches transfer a broad range of bioactive substances into the host’s wound to prevent premature hemostasis and blood coagulation. Hirudin is probably the best known of these substances. Despite its long history of investigation, recombinant production and clinical use, there still exist conflicting data regarding the primary structure of hirudin. Entirely unclear is the potential biological significance of three different subtypes and many isoforms of hirudins that have been characterized so far. Furthermore, there is only incomplete information on their cDNA sequences and no information at all on gene structures and DNA sequences are available in the databases. Our efforts to fill these gaps revealed the presence of multiple hirudin-encoding genes in the genome of Hirudo medicinalis. We have strong evidence for the expression of all three subtypes of hirudin within individual leeches and for the expression of additional hirudins or hirudin-like factors that may have different biological functions and may be promising candidates for new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascenzi P, Amiconi G, Bode W, Bolognesi M, Coletta M, Menegatti E (1995) Proteinase inhibitors from the european medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects. Mol Aspects Med 16(3):215–313

    Article  PubMed  CAS  Google Scholar 

  • Bagdy D, Barabas ÉB, Gráf L, Petersen TE, Magnusson S (1976) Hirudin. Methods Enzymol 45:669–678

    Article  PubMed  CAS  Google Scholar 

  • Baskova IP, Cherkesova DU (1980) Comparative characterization of hirudin from whole leeches and leech heads and bodies. Biokhimiiya 45(2):266–272

    CAS  Google Scholar 

  • Baskova IP, Zavalova LL (2001) Proteinase inhibitors from the medicinal leech Hirudo medicinalis. Biochemistry (Mosc.) 66(7):703–714

    Article  CAS  Google Scholar 

  • Baskova IP, Cherkesova DU, Mosolov VV (1983) Hirudin from leech heads and whole leeches and “pseudo-hirudin” from leech bodies. Thromb Res 30(5):459–467

    Article  PubMed  CAS  Google Scholar 

  • Betz A, Hofsteenge J, Stone SR (1991) Role of interactions involving C-terminal nonpolar residues of hirudin in the formation of the thrombin-hirudin complex. Biochemistry 30(41):9848–9853

    Article  PubMed  CAS  Google Scholar 

  • Chang JY (1985) Thrombin specificity: requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem 151(2):217–224

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  • Dodt J, Müller HP, Seemüller U, Chang JY (1984) The complete amino acid sequence of hirudin, a thrombin specific inhibitor: application of colour carboxymethylation. FEBS Lett 165(2):180–184

    Article  CAS  Google Scholar 

  • Dodt J, Machleidt W, Seemüller U, Maschler R, Fritz H (1986) Isolation and characterization of hirudin isoinhibitors and sequence analysis of hirudin PA. Biol Chem Hoppe Seyler 367(8):803–811

    Article  PubMed  CAS  Google Scholar 

  • Dodt J, Köhler S, Baici A (1988) Interaction of site specific hirudin variants with α-thrombin. FEBS Lett 229(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo AC, de Sanctis D, Gutiérrez-Gallego R, Cereija TB, Macedo-Ribeiro S, Fuentes-Prior P, Pereira PJB (2012) Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc Natl Acad Sci USA 109(52):E3649–E3658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fink E (1989) Comparison of hirudins. Semin Thromb Hemost 15(3):283–287

    Article  PubMed  CAS  Google Scholar 

  • Fink E, Rehm H, Gippner C, Bode W, Eulitz M, Machleidt W, Fritz H (1986) The primary structure of bdellin B-3 from the leech Hirudo medicinalis. Bdellin B-3 is a compact proteinase inhibitor of a “non-classical” Kazal type. It is present in the leech in a high molecular mass form. Biol Chem Hoppe Seyler 367(12):1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    PubMed  CAS  Google Scholar 

  • Fritz H, Gebhardt M, Meister R, Fink E (1971) Trypsin-plasmin inhibitors from leeches: Isolation, amino acid composition, inhibitory characteristics. Proc Int Res Conf Prot Inhibit:271–280

  • Genzen JA, Miller JL (2005) Presence of direct thrombin inhibitors can affect the results and interpretation of lupus anticoagulant testing. Am J Clin Pathol 124(4):586–593

    Article  PubMed  CAS  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  • Gráf L, Patthy A, Barabás ÉB, Bagdy D (1973) On the NH2-terminal residue of hirudin. Biochim et Biophys Acta 310(2):416–417

    Article  Google Scholar 

  • Green M, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press

  • Harvey RP, Degryse E, Stefani L, Schamber F, Cazenave JP, Courtney M, Tolstoshev P, Lecocq JP (1986) Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinalis. Proc Nat Acad Sci USA 83(4):1084–1088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hibsh D, Schori H, Efroni S, Shefi O (2015) De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Sci Data 2:150015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hildebrandt JP, Lemke S (2011) Small bite, large impact—saliva and salivary molecules in the medical leech, Hirudo medicinalis. Naturwiss 98(12):995–1008

    Article  PubMed  CAS  Google Scholar 

  • Huntington JA (2014) Natural inhibitors of thrombin. Thromb Haemost 111(4):583–589

    Article  PubMed  CAS  Google Scholar 

  • Johnson PH, Sze P, Winant R, Payne PW, Lazar JB (1989) Biochemistry and genetic engineering of hirudin. Semin Thromb Hemost 15(3):302–315

    Article  PubMed  CAS  Google Scholar 

  • Koh CY, Kini RM (2009) Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost 102(3):437–453

    PubMed  CAS  Google Scholar 

  • Koh CY, Kini RM (2011) Thrombin inhibitors from haematophagous animals. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T (eds) Toxins and hemostasis. Springer, Heidelberg, pp 239–254

    Google Scholar 

  • Koh CY, Kumar S, Kazimirova M, Nuttall PA, Radhakrishnan UP, Kim S, Jagadeeswaran P, Imamura T, Mizuguchi J, Iwanaga S, Swaminathan K, Kini RM (2011) Crystal structure of thrombin in complex with S-variegin: insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors. PLoS One 6(10):e26367. doi:10.1371/journal.pone.0026367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krezel AM, Wagner G, Seymour-Ulmer J, Lazarus RA (1994) Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science 264(5167):1944–1947

    Article  PubMed  CAS  Google Scholar 

  • Krstenansky JL, Owen TJ, Yates MT, Mao SJT (1987) Anticoagulant peptides: nature of the interaction of the C-terminal region of hirudin with a noncatalytic binding site on thrombin. J Med Chem 30(9):1688–1691

    Article  PubMed  CAS  Google Scholar 

  • Kusche K, Bangel N, Müller C, Hildebrandt JP, Weber WM (2005) Molecular cloning and sequencing of the Na+/K+-ATPase alpha-subunit of the medical leech Hirudo medicinalis (Annelida)—implications for modelling protostomian evolution. J Zool Syst Evol Res 43(4):339–342

    Article  Google Scholar 

  • Kvist S, Min GS, Siddall ME (2013a) Diversity and selective pressures of anticoagulants in three medicinal leeches (Hirudinida: hirudinidae, Macrobdellidae). Ecol Evol 3(4):918–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvist S, Brugler MR, Goh TG, Giribet G, Siddall ME (2013b) Pyrosequencing the salivary transcriptome of Haemadipsa interrupta (Annelida: clitellata: Haemadipsidae): anticoagulant diversity and insight into the evolution of anticoagulation capabilities in leeches. Inv Biol 133(1):74–98

    Article  Google Scholar 

  • Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106(8):2605–2612

    Article  PubMed  CAS  Google Scholar 

  • Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genom 11:407

    Article  Google Scholar 

  • Markwardt F (2002) Hirudin as alternative anticoagulant—a historical review. Semin Thromb Hemost 28(5):405–413

    Article  PubMed  CAS  Google Scholar 

  • Markwardt F, Walsmann P (1967) Reindarstellung und Analyse des Thrombin Inhibitors Hirudin. Pure synthesis and analysis of thrombin inhibitor hirudin. Hoppe-Seyler’s Z Physiol Chem 348:1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Merilä J, Sterner M (2002) Medicinal leeches (Hirudo medicinalis) attacking and killing adult amphibians. Ann Zool Fennici 39:343–346

    Google Scholar 

  • Min GS, Sarkar IN, Siddall ME (2010) Salivary transcriptome of the North American medicinal leech. Macrobdella decora. J Parasitol 96(6):1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ponczek MB, Bijak MZ, Nowak PZ (2012) Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. J Mol Evol 74(5–6):319–331

    Article  PubMed  CAS  Google Scholar 

  • Priestle JP, Rahuel J, Rink H, Tones M, Grütter MG (1993) Changes in interactions in complexes of hirudin derivatives and human α-thrombin due to different crystal forms. Protein Sc 2(10):1630–1642

    Article  CAS  Google Scholar 

  • Richardson JL, Kröger B, Hoeffken W, Sadler JE, Pereira P, Huber R, Bode W, Fuentes-Prior P (2000) Crystal structure of the human α-thrombin–haemadin complex: an exosite II-binding inhibitor. EMBO J 19:5650–5660

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson JL, Fuentes-Prior P, Sadler JE, Huber R, Bode W (2002) Characterization of the residues involved in the human α-thrombin-haemadin complex: an exosite II-binding inhibitor. Biochemistry 41:2535–2542

    Article  PubMed  CAS  Google Scholar 

  • Rydel TJ, Ravichandran KKG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton JW (1990) The structure of a complex of recombinant hirudin and human α-thrombin. Science 249(4966):277–280

    Article  PubMed  CAS  Google Scholar 

  • Sawyer RT (1986) Leech Biology and Behaviour. Feeding, Biology, Ecology and Systematics, vol II. Clarendon Press, Oxford

    Google Scholar 

  • Scacheri E, Nitti G, Valsasina B, Orsini G, Visco C, Ferrera M, Sawyer RT, Sarmientos P (1993) Novel hirudin variants from the leech Hirudinaria manillensis. Amino acid sequence, cDNA cloning and genomic organization. Eur J Biochem 214(1):295–304

    Article  PubMed  CAS  Google Scholar 

  • Scharf M, Engels J, Tripier D (1989) Primary structures of new ‘iso-hirudins’. FEBS Lett 255:105–110

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007) Signal-3L: a 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 363(2):297–303

    Article  PubMed  CAS  Google Scholar 

  • Siddall ME, Burreson EM (1998) Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Mol Phylogenet Evol 9(1):156–162

    Article  PubMed  CAS  Google Scholar 

  • Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc Biol Sci B 274(1617):1481–1487

    Article  CAS  Google Scholar 

  • Steiner V, Knecht R, Boernsen KO, Gassmann E, Stone SR, Raschdorf F, Schlaeppi JM, Maschler R (1992) Primary structure and function of novel O-glycosylated hirudins from the leech Hirudinaria manillensis. Biochemistry 31(8):2294–2298

    Article  PubMed  CAS  Google Scholar 

  • Stone SR, Hofsteenge J (1986) Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25(16):4622–4628

    Article  PubMed  CAS  Google Scholar 

  • Strube KH, Kröger B, Bialojan S, Otte M, Dodt J (1993) Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech. J Biol Chem 268(12):8590–8595

    PubMed  CAS  Google Scholar 

  • Tripier D (1988) Hirudin: A Family of iso-proteins. Isolation and sequence determination of new hirudins. Folia Haematol 115(1–2):30–35

  • Trontelj P, Utevsky SY (2005) Celebrity with a neglected taxonomy: molecular systematics of the medicinal leech (genus Hirudo). Mol Phylogenet Evol 34(3):616–624

    Article  PubMed  CAS  Google Scholar 

  • Trontelj P, Sotler M, Verovnik R (2004) Genetic differentiation between two species of the medicinal leech, Hirudo medicinalis and the neglected H. verbana, based on random-amplified polymorphic DNA. Parasitol Res 94(2):118–124

    PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wilkin PJ, Scofield AM (1990) The use of a serological technique to examine host selection in a natural population of the medicinal leech, Hirudo medicinalis. Freshw Biol 23(2):165–169

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Detlef Menzel (Futura-Egel-Zucht, Potsdam) for providing the animals. We are thankful to the reviewers and the editor for their constructive and helpful comments. Sarah Lemke received a doctoral stipend from the Konrad Adenauer-Stiftung, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Müller.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that the experiments described in this paper comply with the current laws in Germany. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C., Mescke, K., Liebig, S. et al. More than just one: multiplicity of Hirudins and Hirudin-like Factors in the Medicinal Leech, Hirudo medicinalis . Mol Genet Genomics 291, 227–240 (2016). https://doi.org/10.1007/s00438-015-1100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1100-0

Keywords

Navigation