Skip to main content
Log in

Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10–15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ampomah OY, Avetisyan A, Hansen E, Svenson J, Juser T, Jensen JB, Bhuvaneswari TV (2013) The thuEFGKAB operon of rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. J Bacteriol 195:3797–3807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arias A, Cerveñansky C, Gardiol A, Martínez-Drets G (1979) Phosphoglucose isomerase mutant of Rhizobium meliloti. J Bacteriol 137:409–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babu M, Arnold R, Bundalovic-Torma C, Gargarinova A, Wong KS, Kumar A, Stewart G, Samanfar B, Aoki H, Wagih O, Vlasblom J, Phanse S, Lad K, Yeou Hsiung Yu A, Graham C, Jin K, Brown E, Gloshani A, Kim P, Moreno-Hagelsieb G, Greenblatt J, Joury WA, Parkinson J, Emili A (2014) Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli. PLoS Genet 10:e1004120

    Article  PubMed Central  PubMed  Google Scholar 

  • Banergee PC, Darzins A, Maitra PK (1987) Gluconeogenic mutations in Pseudomonas aeruginosa: genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase. J Gen Microbiol 133:1099–1107

    Google Scholar 

  • Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183:4389–4392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blondelet-Rouault MH, Weiser J, Lebrihi A, Branny P, Pernodet JL (1997) Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315–317

    Article  CAS  PubMed  Google Scholar 

  • Bremer H (1975) Parameters affecting the rate of synthesis of ribosomes and RNA polynerase in bacteria. J Theor Biol 53:115–124

    Article  CAS  PubMed  Google Scholar 

  • Butland G, Babu M, Díaz-Mejía JJ, Bohdana F, Phanse S, Gold B, Yang W, Li J, Gagarinova AG, Pogoutse O, Mori H, Wanner BL, Lo H, Wasniewski J, Christopolous C, Ali M, Venn P, Safavi-Naini A, Sourour N, Caron S, Choi J-Y, Laigle L, Nazarians-Armavil A, Deshpande A, Joe S, Datsenko KA, Yamamoto N, Andrews BJ, Boone C, Ding H, Sheikh B, Moreno-Hagelseib G, Greenblatt JF, Emili A (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5:789–795

    Article  CAS  PubMed  Google Scholar 

  • Cameron DE, Urbach JM, Mekalanos JJ (2008) A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci USA 105:8736–8741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng J, Sibley CD, Zaheer R, Finan TM (2007) A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis. Microbiology 153:375–387

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Poduska B, Morton RA, Finan TM (2011) An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J Bacteriol 193:4405–4416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams HH, Shapiro L (2011) The essential genome of a bacterium. Mol Syst Biol 7:528

    Article  PubMed Central  PubMed  Google Scholar 

  • Condon C, Liveris D, Squires C, Schwartz I, Squires CL (1995) rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177:4152–4156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, St. Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z-Y, Liang W, Marback M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras A-C, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  Google Scholar 

  • Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM (2006) An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti. Appl Environ Microbiol 72:7156–7167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cutler S, McCourt P (2005) Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiol 138:558–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • diCenzo G, Milunovic B, Cheng J, Finan TM (2013) The tRNAarg gene and engA are essential genes on the 1.7-mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 195:202–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM (2014) Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 10:e1004742

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunn MF (2014) Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Crit Rev Microbiol. doi:10.3109/1040841X.2013.856854

    PubMed  Google Scholar 

  • Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein B, Branca A, Mudge J, Bharti AK, Briskine R, Farmer AD, Sugawara M, Young ND, Sadowsky MJ, Tiffin P (2012) Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. PLoS Genet 8:e1002868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finan TM, Kunkel B, De Vos GF, Signer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finan TM, Oresnik IJ, Bottacin A (1988) Mutants of Rhizobium meliloti defective in succinate metabolism. J Bacteriol 170:3396–3403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Article  CAS  PubMed  Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola AP, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandex-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl T, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vendenbol M, Vorhölter F-J, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106:16422–16427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geddes BA, Oresnik IJ (2014) Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 60:491–507

    Article  CAS  PubMed  Google Scholar 

  • Ghim CM, Goh KI, Kahng B (2005) Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli. J Theor Biol 237:401–411

    Article  CAS  PubMed  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA III, Smith HO, Venter JC (2005) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RM, Li W-H (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Donini P, Sun S, Eardly B, Finan T, Xu J (2009) Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti. Genome 52:862–875

    Article  CAS  PubMed  Google Scholar 

  • Hsiao T-L, Vitkup D (2008) Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet 4:e1000014

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Article  Google Scholar 

  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duguenne L, Finn RD, Fraser M, Gough J, Haft D, Julo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong S-Y (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Jaugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janczarek M, Jaroszuk-Ściseł J, Skorupska A (2009) Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. Trifolii. Antonie Van Leeuwenhoek 96:471–486

    Article  CAS  PubMed  Google Scholar 

  • Jensen JB, Peters NK, Bhuvaneswari TV (2002) Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J Bacteriol 184:2978–2986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong J-Y, Yim H-S, Ryu J-Y, Lee HS, Lee J-H, Seen D-S, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78:5440–5443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolker E, Makarova KS, Shabalina S, Picone AF, Purvine S, Holzman T, Cherny T, Armbruster D, Munson RS Jr, Kolesov G, Frishman D, Galperin MY (2004) Identification and functional analysis of “hypothetical” genes expressed in Haemophilus influenzae. Nucleic Acids Res 32:2353–2361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Kuo C-H, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145–152

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuo C-H, Moran NA, Ochman H (2009) The consequences of genetic drift for bacterial genome complexity. Genome Res 19:1450–1454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerat E, Ochman H (2005) Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res 33:3125–3132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Yuan Z, Zhang Z (2010) The cellular robustness by genetic redundancy in budding yeast. PLoS Genet 6:e1001187

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349

    Article  CAS  PubMed  Google Scholar 

  • Maglott D, Ostell J, Pruitt KD, Tatusova T (2011) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA 103:17933–17938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milunovic B, diCenzo GC, Morton RA, Finan TM (2014) Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 196:811–824

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M (2009) Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5:306

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel SJ, Padilla-Benavides T, Collins JM, Argüello JM (2014) Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiology 160:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  • Rabin RS, Stewart V (1992) Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12. Proc Natl Acad Sci USA 89:8419–8423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schlüter J-P, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013) Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genom 14:156

    Article  Google Scholar 

  • Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, van Dillewijn P, Olivares J, Toro N (1994) Ornithine cyclodeaminase activity in Rhizobium meliloti. FEMS Microbiol Lett 119:209–214

    Article  CAS  Google Scholar 

  • Stewart PE, Hoff J, Fischer E, Krum JG, Rosa RA (2004) Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol 70:5973–5979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stowers MD (1985) Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108

    Article  CAS  PubMed  Google Scholar 

  • Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomaides HB, Davison EJ, Burston L, Johnson H, Brown DR, Hunt AT, Errington J, Czaplewski L (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189:591–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tischler J, Lehner Ben, Chen N, Fraser AG (2006) Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol 7:R69

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  CAS  PubMed  Google Scholar 

  • van Opijnen T, Camilli A (2012) A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res 22:2541–2551

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zhang J (2009) Abundant indispensable redundancies in cellular metabolic networks. Genome Biol Evol 1:23–33

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Saldanha M, Sheng X, Shelswell KJ, Walsh KT, Sobral BWS, Charles TC (2007) Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp. Microbiology 153:388–398

    Article  CAS  PubMed  Google Scholar 

  • Willis LB, Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an α-glucosidase and a periplasmic-binding-protein-dependent transport system for α-glucosides. J Bacteriol 181:4176–4184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Q, Pei J, Turse C, Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao Y, Wall D (2014) Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. J Bacteriol 196:1174–1183

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J (2012) Genetic redundancies and their evolutionary maintenance. In: Soyer OS (ed) Evolutionary systems biology. Springer, New York, pp 279–300

    Chapter  Google Scholar 

Download references

Acknowledgments

Special thanks to Arlene Sutherland and the students in the Molecular Biology 3V03 course at McMaster University, who isolated many of the mutants used in this study. This work was supported by the Natural Sciences and Engineering Research Council of Canada through grants to T. M. F and an NSERC CGS scholarship to G. C. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turlough M. Finan.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

diCenzo, G.C., Finan, T.M. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genomics 290, 1345–1356 (2015). https://doi.org/10.1007/s00438-015-0998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-0998-6

Keywords

Navigation