Skip to main content
Log in

Characterization of novel wheat NBS domain-containing sequences and their utilization, in silico, for genome-scale R-gene mining

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In crop improvement, the isolation, cloning and transfer of disease resistance genes (R-genes) is an ultimate goal usually starting from tentative R-gene analogs (RGAs) that are identified on the basis of their structure. For bread wheat, recent advances in genome sequencing are supporting the efforts of wheat geneticists worldwide. Among wheat R-genes, nucleotide-binding site (NBS)-encoding ones represent a major class. In this study, we have used a polymerase chain reaction-based approach to amplify and clone NBS-type RGAs from a bread wheat cultivar, ‘Salambo 80.’ Four novel complete ORF sequences showing similarities to previously reported R-genes/RGAs were used for in silico analyses. In a first step, where analyses were focused on the NBS domain, these sequences were phylogenetically assigned to two distinct groups: a first group close to leaf rust Lr21 resistance proteins; and a second one similar to cyst nematode resistance proteins. In a second step, sequences were used as initial seeds to walk up and downstream the NBS domain. This procedure enabled identifying 8 loci ranging in size between 2,115 and 7,653 bp. Ab initio gene prediction identified 8 gene models, among which two had complete ORFs. While GenBank survey confirmed the belonging of sequences to two groups, subsequent characterization using IWGSC genomic and proteomic data showed that the 8 gene models, reported in this study, were unique and their loci matched scaffolds on chromosome arms 1AS, 1BS, 4BS and 1DS. The gene model located on 1DS is a pseudo-Lr21 that was shown to have an NBS-LRR domain structure, while the potential association of the RGAs, here reported, is discussed. This study has produced novel R-gene-like loci and models in the wheat genome and provides the first steps toward further elucidation of their role in wheat disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the second international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 28–36

  • Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet 121:9–20

    Article  PubMed  Google Scholar 

  • Bouktila D, Mezghani M, Marrakchi M, Makni H (2005) Identification of wheat sources resistant to Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), in Tunisia. Int J Agric Biol 7:799–803

    Google Scholar 

  • Bouktila D, Mezghani M, Marrakchi M, Makni H (2006) Characterization of wheat random amplified polymorphic DNA markers associated with the H11 hessian fly resistance gene. J Integr Plant Biol 48:958–964

    Article  CAS  Google Scholar 

  • Bouktila D, Kharrat I, Mezghani-Khemakhem M, Makni H, Makni M (2012) Preliminary identification of sources of resistance to the greenbug, Schizaphis graminum Rondani (Hemiptera: Aphididae) among a collection of Tunisian bread wheat lines. Rom Agric Res 29:115–120

    Google Scholar 

  • Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS–LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 45:469–486

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehga S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355

    Article  CAS  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayhoff M, Schwartz R, Orcutt B (1978) A model of evolutionary change in protein. Atlas Protein Seq Struct 5:345–352

    Google Scholar 

  • de Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732

    Article  PubMed  Google Scholar 

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr (2000) Cloning and characterization of NBS–LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS–LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dilbirligi M, Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787

    Article  CAS  PubMed  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaves tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Du Preez FB (2005) Tracking nucleotide-binding-site-leucine-rich-repeat resistance gene analogues in the wheat genome complex. Dissertation, Faculty of Natural and Agricultural Sciences, Department of Genetics, University of Pretoria (South Africa)

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–298

    Article  Google Scholar 

  • Frick MM, Huel R, NykiForuk CL, Conner RL, Kusyk A, Laroche A (1998) Molecular characterization of a wheat stripe rust resistance gene in Moro wheat. In: Proceedings of the 9th international wheat genetics symposium, Saskatoon, Canada. University Extension Press, University of Saskatchewan, pp 181–182

  • Gennaro A, Koebner RM, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomics 9:325–334

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvořák J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096

    Article  PubMed Central  PubMed  Google Scholar 

  • Glowacki S, Macioszek VK, Kononowicz AK (2011) R-proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hein I, Gilroy EM, Armstrong MR, Birch PR (2009) The zig-zag-zig in oomycete-plant interactions. Mol Plant Pathol 4:547–562

    Article  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Brooks S, Li W, Fellers J, Nelson JC, Gill B (2009) Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: reconstitution of the Lr21 gene in wheat. Genetics 182:595–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JDG, Dangl J (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:90–167

    Google Scholar 

  • Kharrat I, Bouktila D, Mezghani-Khemakhem M, Makni H, Makni M (2012) Biotype characterization and genetic diversity of the greenbug, Schizaphis graminum (Hemiptera: Aphididae), in north Tunisia. Rev Colomb Entomol 38:87–90

    Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, Moullet O, Appels R (1997) Map based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich repeat region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    Article  CAS  PubMed  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Nat Acad Sci 95:370–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XM, Reese JC, Wilde GE, Fritz AK, Gill BS, Chen M (2005) Hessian fly-resistance genes H9, H10, and H11 are mapped to the distal region of wheat chromosome 1AS. Theor Appl Genet 10:1473–1480

    Article  Google Scholar 

  • Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC–NBS–LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J 60:1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS One 7:e34775. doi:10.1371/journal.pone.0034775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mago R, Nair S, Mohan M (1999) Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet 99:50–57

    Article  CAS  Google Scholar 

  • Makni H, Bouktila D, Mezghani M, Makni M (2011) Hessian fly, Mayetiola destructor (say), populations in the North of Tunisia: virulence, yield loss assessment and phonological data. Chil J Agric Res 71:401–405

    Article  Google Scholar 

  • Maleki L, Faris JD, Bowden RL, Gill BS, Fellers JP (2003) Physical and genetic mapping of wheat kinase analogs and NBS–LRR resistance gene analogs. Crop Sci 43:660–670

    Article  CAS  Google Scholar 

  • Pan QL, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS–LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626

    Article  CAS  PubMed  Google Scholar 

  • Rogers J (2014) The IWGSC survey sequencing initiative. International Plant and Animal Genome Conference XXII, San Diego, California (USA), 10–15 Jan 2014. (https://pag.confex.com/pag/xxii/webprogram/Session2168.html)

  • Rossi M, Goggin FL, Milligan SB, Klaoshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salamov A, Solovyev V (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanseverino W, Ercolano MR (2012) In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 5:678. doi:10.1186/1756-0500-5-678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seah S, Sivasithamparam K, Karakousis K, Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Ann Rev Entomol 57:309–328

    Article  CAS  Google Scholar 

  • Spielmeyer W, Robertson M, Collins N, Leister D, Schulze-Lefert D, Seah S, Moullet O, Lagudah ES (1998) A superfamily of disease resistance gene analogs is located on all homeologus chromosome groups of wheat (Triticum aestivum). Genome 41:782–788

    Article  CAS  Google Scholar 

  • Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol 139:2885–2895

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. J Syst Biol 56:564–577

    Article  CAS  Google Scholar 

  • Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208. doi:10.1155/2012/418208

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur J Biochem 222:9–19

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  PubMed Central  PubMed  Google Scholar 

  • Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109

    Article  CAS  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (Powdery Mildew) resistance cluster is associated with three NBS-LRR families and suppressed recombination within a 240-kb DNA interval on chromosome 5S(1HS) of barley. Genetics 153:1929–1948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham S, Dineshkumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic-virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Burridge A, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinform 13:219

    Article  Google Scholar 

  • Zhai XG, Zhao T, Liu YH, Long H, Deng GB, Pan ZF, Yu MQ (2008) Characterization and expression profiling of a novel cereal cyst nematode resistance gene analog in wheat. Mol Biol (NY) 42:960–965

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Abdennour Sébéi (Centre Régional de Recherches sur les Grandes Cultures, Béja, Tunisia) for providing bread wheat cultivar ‘Salambo 80’; Jacques-Deric Rouault (Laboratoire Evolution, Génome et Spéciation, CNRS, Gif sur Yvette, France) for providing training on data mining techniques; Paul A. Wilkinson (School of Biological Sciences, University of Bristol, UK) for providing help about CerealsDB 2.0.; and Abdelkader Aïnouche (UMR-CNRS Ecobio, Université de Rennes-1, France) for reading the manuscript. This study was financially supported by the Tunisian Ministry of Higher Education and Scientific Research.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Bouktila.

Additional information

Communicated by S. Hohmann.

Nucleotide sequence data reported are available in the GenBank database under the accession numbers JX566982 to JX566985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouktila, D., Habachi-Houimli, Y., Khalfallah, Y. et al. Characterization of novel wheat NBS domain-containing sequences and their utilization, in silico, for genome-scale R-gene mining. Mol Genet Genomics 289, 599–613 (2014). https://doi.org/10.1007/s00438-014-0834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0834-4

Keywords

Navigation