Skip to main content
Log in

Optimization of mRNA design for protein expression in the crustacean Daphnia magna

  • Technical Note
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3′ UTR failed to induce fluorescence. To assess reporter expression, the length of the 3′ UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3′ end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3′ UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3′ UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3′ UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alonso CR (2012) A complex mRNA degradation code controls gene expression during animal development. Trends Genet 28:78–88

    Article  CAS  PubMed  Google Scholar 

  • Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    Article  CAS  PubMed  Google Scholar 

  • Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinform 14(Suppl 2):S4

    CAS  Google Scholar 

  • Chappell SA, Edelman GM, Mauro VP (2006) Ribosomal tethering and clustering as mechanisms for translation initiation. Proc Natl Acad Sci USA 103:18077–18082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Caceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Frohlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kultz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The corresponsive genome of Daphnia pulex. Science 331:555–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Avino PP, Thummel CS (1999) Ectopic expression systems in Drosophila. Methods Enzymol 306:129–142

    Article  PubMed  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia [internet]. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda (MD)

  • Elendt BP, Bias WR (1990) Trace nutrient deficiency in Daphnia-magna cultured in standard medium for toxicity testing: effects of the optimization of culture conditions on life-history parameters of Daphnia-magna. Water Res 24:1157–1167

    Article  CAS  Google Scholar 

  • Falcone D, Andrews DW (1991) Both the 5′ untranslated region and the sequences surrounding the start site contribute to efficient initiation of translation in vitro. Mol Cell Biol 11:2656–2664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan XC, Myer VE, Steitz JA (1997) AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev 11:2557–2568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fink M, Flekna G, Ludwig A, Heimbucher T, Czerny T (2006) Improved translation efficiency of injected mRNA during early embryonic development. Dev Dyn 235:3370–3378

    Article  CAS  PubMed  Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godinho L (2011) Injecting zebrafish with DNA or RNA constructs encoding fluorescent protein reporters. Cold Spring Harb Protoc 2011:871–874

  • Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, Gennarino VA, Horner DS, Pavesi G, Picardi E, Pesole G (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebert PDN (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426

    Article  Google Scholar 

  • Huang HY, Chien CH, Jen KH, Huang HD (2006) RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 34:W429–W434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irier HA, Shaw R, Lau A, Feng Y, Dingledine R (2009) Translational regulation of GluR2 mRNAs in rat hippocampus by alternative 3′ untranslated regions. J Neurochem 109:584–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs GH, Chen A, Stevens SG, Stockwell PA, Black MA, Tate WP, Brown CM (2009) Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res 37:D72–D76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kardash E, Bandemer J, Raz E (2011) Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat Protoc 6:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kobayashi K, Oda S, Colbourn JK, Tatarazako N, Watanabe H, Iguchi T (2008) Molecular cloning and sexually dimorphic expression of DM-domain genes in Daphnia magna. Genomics 91:94–101

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kobayashi K, Watanabe H, Iguchi T (2010) Introduction of foreign DNA into the water flea, Daphnia magna, by electroporation. Ecotoxicology 19:589–592

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kobayashi K, Watanabe H, Iguchi T (2011a) Environmental sex determination in the branchiopod crustacean Daphnia magna: deep conservation of a Double sex gene in the sex-determining pathway. PLoS Genet 7:e1001345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato Y, Shiga Y, Kobayashi K, Tokishita S, Yamagata H, Iguchi T, Watanabe H (2011b) Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220:337–345

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Matsuura T, Watanabe H (2012) Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs. PLoS ONE 7:e45318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746

    Article  Google Scholar 

  • Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15:2877–2885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotov AA, Boikova OS (2001) Study of the late embryogenesis of Daphnia (Anomopoda, ‘Cladocera’, Branchiopoda) and a comparison of development in Anomopoda and Ctenopoda. Hydrobiologia 442:127–143

    Article  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1994) Features in the 5′ non-coding sequences of rabbit alpha and beta-globin mRNAs that affect translational efficiency. J Mol Biol 235:95–110

    Article  CAS  PubMed  Google Scholar 

  • Krowczynska A, Brawerman G (1986) Structural features of the 5′ noncoding region of the rabbit globin messenger RNAs engaged in translation. Proc Natl Acad Sci U S A 83:902–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurokawa H, Aoki Y, Nakamura S, Ebe Y, Kobayashi D, Tanaka M (2006) Time-lapse analysis reveals different modes of primordial germ cell migration in the medaka Oryzias latipes. Dev Growth Differ 48:209–221

    Article  PubMed  Google Scholar 

  • Lampert W (2011) Daphnia: development of a model organism in ecology and evolution. In: Kinne O (ed) Excellence in ecology. Book 21. International Ecology Institute, Oldendorf/Luhe

  • Lin F, Liu QH, Li MY, Li ZD, Hong N, Li J, Hong YH (2012) Transient and stable GFP expression in germ cells by the vasa regulatory sequences from the Red seabream (Pagrus major). Int J Biol Sci 8:882–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacNicol MC, Cragle CE, MacNicol AM (2011) Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle 10:39–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98

    Article  CAS  PubMed  Google Scholar 

  • Newbery HJ, Stancheva I, Zimmerman LB, Abbott CM (2011) Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level. Biochem Biophys Res Commun 411:19–24

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Imai T, Okabe M (2002) Musashi: a translational regulator of cell fate. J Cell Sci 115:1355–1359

    CAS  PubMed  Google Scholar 

  • Palmer AE, Qin Y, Park JG, McCombs JE (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porazinski SR, Wang H, Furutani-Seiki M (2010) Microinjection of medaka embryos for use as a model genetic organism. J Vis Exp 46:1937

    Google Scholar 

  • Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ (2011) Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell 22:1191–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw JR, Pfrender ME, Eads BD, Klaper R, Callaghan A, Colson I, Jansen B, Gilbert D, Colbourne JK (2008) Daphnia as an emerging model for toxicological genomics. Elsevier Press, New York

    Google Scholar 

  • Sive HL, Grainger RM, Harland RM (2010) Microinjection of xenopus embryos. Cold Spring Harbor Protocols 2010:pdb.ip81

  • Spasic M, Friedel CC, Schott J, Kreth J, Leppek K, Hofmann S, Ozgur S, Stoecklin G (2012) Genome-wide assessment of AU-rich elements by the AREScore algorithm. PLoS Genet 8:e1002433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subramaniam K, Kandasamy K, Joseph K, Spicer EK, Tholanikunnel BG (2011) The 3′-untranslated region length and AU-rich RNA location modulate RNA-protein interaction and translational control of beta2-adrenergic receptor mRNA. Mol Cell Biochem 352:125–141

    Article  CAS  PubMed  Google Scholar 

  • Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M (2013) Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA 110:15740–15745

    Google Scholar 

  • Turner DL, Weintraub H (1994) Expression of achaete-scute homolog-3 in xenopus-embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Ulitsky I, Bartel DP (2013) LincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe H, Tatarazako N, Oda S, Nishide H, Uchiyama I, Morita M, Iguchi T (2005) Analysis of expressed sequence tags of the water flea Daphnia magna. Genome 48:606–609

    Article  CAS  PubMed  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28:182–188

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Brewer G (2012) The regulation of mRNA stability in mammalian cells: 2.0. Gene 500:10–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SBO, Weisblat DA (2005) Applications of mRNA injections for analyzing cell lineage and asymmetric cell divisions during segmentation in the leech Helobdella robusta. Development 132:2103–2113

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Kruys V, Huez G, Gueydan C (2002) AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans 30:952–958

    Article  CAS  PubMed  Google Scholar 

  • Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15:2219–2230

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Minoru Tanaka of National Institute for Basic Biology, Japan, for providing the pRCS21 vector. This study was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and partially supported by the Asahi Glass Foundation. One of the authors (Y.K.) would like to acknowledge the support from the Frontier Research Base for Global Young Researchers, Osaka University, based on the Program of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Watanabe.

Additional information

Communicated by S. Hohmann.

K. Törner and T. Nakanishi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2014_830_MOESM1_ESM.eps

Supplementary Fig. 1 Sequence of chimeric DsRed2 DNA. Nucleotide sequence of template DNA for RNA synthesis. SP6 promoter sequence is shown in dark blue, Xenopus β-globin leader sequence in brown, EF1α-1 5′ UTR in red, DsRed2 ORF in green, and EF1α-1 3′ UTR in light blue. Kozak sequence and the first 60 nt of the 3′ UTR are marked with black boxes (EPS 6480 kb)

438_2014_830_MOESM2_ESM.eps

Supplementary Fig. 2 Comparison of EF1α 3′ UTRs from different organisms. EF1α 3′ UTRs from different organisms and their percentage CG content. AUUUA motifs are indicated by red arrowheads (EPS 6033 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törner, K., Nakanishi, T., Matsuura, T. et al. Optimization of mRNA design for protein expression in the crustacean Daphnia magna . Mol Genet Genomics 289, 707–715 (2014). https://doi.org/10.1007/s00438-014-0830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0830-8

Keywords

Navigation