Skip to main content
Log in

The 3′-untranslated region length and AU-rich RNA location modulate RNA–protein interaction and translational control of β2-adrenergic receptor mRNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Posttranscriptional controls play a major role in β2-adrenergic receptor (β2-AR) expression. We recently reported that β2-AR mRNA translation is suppressed by elements in its 3′-untranslated region (UTR). We also identified T-cell-restricted intracellular antigen-related protein (TIAR) and HuR as prominent AU-rich (ARE) RNA-binding proteins that associate with β2-AR mRNA 3′-UTR. In this study, we identified a poly(U) region at the distal end of the 3′-UTR as critical for TIAR binding to β2-AR mRNA and for translational suppression. Here, we also report that the locations of the poly(U) and ARE sequences within the 3′-UTR are important determinants that control the translation of β2-AR mRNA. Consistent with this finding, a 20-nucleotide ARE RNA from the proximal 3′-UTR that did not inhibit mRNA translation in its native position was able to suppress translation when re-located to the distal 3′-UTR of the receptor mRNA. Immunoprecipitation and polysome profile analysis demonstrated the importance of 3′-UTR length and the ARE RNA location within the 3′-UTR, as key determinants of RNA/protein interactions and translational control of β2-AR mRNA. Further, the importance of 3′-UTR length and ARE location in TIAR and HuR association with mRNA and translational suppression was demonstrated using a chimeric luciferase reporter gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

β2-AR:

β2-adrenergic receptor

AREs:

A + U-rich element(s)

TIA-1:

T-cell-restricted intercellular antigen-1

TIAR:

T-cell-restricted intracellular antigen-related protein

hnRNP:

Heterogeneous nuclear ribonucleoprotein

REMSA:

RNA electrophoretic mobility shift assay

TTP:

Tristetraprolin

UTR:

Untranslated region

ORF:

Open reading frame

CR:

Coding region

IP:

Immunoprecipitation

nt:

Nucleotide(s)

CHO:

Chinese hamster ovary

GST:

Glutathione S-transferase

References

  1. Dixon RA, Kobilka BK, Strader DJ et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  PubMed  CAS  Google Scholar 

  2. Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RA, Keller P, Caron MG, Lefkowitz RJ (1987) Delineation of the intronless nature of the genes for the human and hamster beta 2-adrenergic receptor and their putative promoter regions. J Biol Chem 262:7321–7327

    PubMed  CAS  Google Scholar 

  3. Hadcock JR, Malbon CC (1988) Down-regulation of beta-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85:5021–5025

    Article  PubMed  CAS  Google Scholar 

  4. Tholanikunnel BG, Malbon CC (1997) A 20-nucleotide (A + U)-rich element of beta2-adrenergic receptor (beta2AR) mRNA mediates binding to beta2AR-binding protein and is obligate for agonist-induced destabilization of receptor mRNA. J Biol Chem 272:11471–11478

    Article  PubMed  CAS  Google Scholar 

  5. Subramaniam K, Chen K, Joseph K, Raymond JR, Tholanikunnel BG (2004) The 3′-untranslated region of the beta2-adrenergic receptor mRNA regulates receptor synthesis. J Biol Chem 279:27108–27115

    Article  PubMed  CAS  Google Scholar 

  6. Kandasamy K, Joseph K, Subramaniam K, Raymond JR, Tholanikunnel BG (2005) Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem 280:1931–1943

    Article  PubMed  CAS  Google Scholar 

  7. Tholanikunnel BG, Raymond JR, Malbon CC (1999) Analysis of the AU-rich elements in the 3′-untranslated region of beta 2-adrenergic receptor mRNA by mutagenesis and identification of the homologous AU-rich region from different species. Biochemistry 38:15564–15572

    Article  PubMed  CAS  Google Scholar 

  8. Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28:91–98

    Article  PubMed  CAS  Google Scholar 

  9. Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nature Rev Genet 4:626–637

    Article  PubMed  CAS  Google Scholar 

  10. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    Article  PubMed  CAS  Google Scholar 

  11. Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 101:2987–2992

    Article  PubMed  Google Scholar 

  12. Peng SS, Chen CY, Xu N, Shyu AB (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17:3461–3470

    Article  PubMed  CAS  Google Scholar 

  13. Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460

    Article  PubMed  CAS  Google Scholar 

  14. DeMaria CT, Brewer G (1996) AUF1 binding affinity to A + U-rich elements correlates with rapid mRNA degradation. J Biol Chem 271:12179–12184

    Article  PubMed  CAS  Google Scholar 

  15. Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361

    Article  PubMed  CAS  Google Scholar 

  16. Lai WS, Carrick DM, Blackshear PJ (2005) Influence of nonameric AU-rich tristetraprolin-binding Sites on mRNA deadenylation and turnover. J Biol Chem 280:34365–34377

    Article  PubMed  CAS  Google Scholar 

  17. Stoecklin G, Colombi M, Raineri I, Leuenberger S, Mallaun M, Schmidlin M, Gross B, Lu M, Kitamura T, Moroni C (2002) Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 21:4709–4718

    Article  PubMed  CAS  Google Scholar 

  18. Gueydan C, Droogmans L, Chalon P, Huez G, Caput D, Kruys V (1999) Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J Biol Chem 274:2322–2326

    Article  PubMed  CAS  Google Scholar 

  19. Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V, Streuli M, Anderson P (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 19:4154–4163

    Article  PubMed  CAS  Google Scholar 

  20. Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7:213–221

    Article  PubMed  CAS  Google Scholar 

  21. Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115:3227–3234

    PubMed  CAS  Google Scholar 

  22. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    Article  PubMed  CAS  Google Scholar 

  23. Mazan-Mamczarz K, Lal A, Martindale JL, Kawai T, Gorospe M (2006) Translational repression by RNA-binding protein TIAR. Mol Cell Biol 26:2716–2727

    Article  PubMed  CAS  Google Scholar 

  24. Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61:273–278

    Article  PubMed  CAS  Google Scholar 

  25. Bakheet T, Frevel M, Williams BR, Greer W, Khabar KS (2001) ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 29:246–254

    Article  PubMed  CAS  Google Scholar 

  26. Tebo J, Der S, Frevel M, Khabar KS, Williams BR, Hamilton TA (2003) Heterogeneity in control of mRNA stability by AU-rich elements. J Biol Chem 278:12085–12093

    Article  PubMed  CAS  Google Scholar 

  27. Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M (2004) Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23:3092–3102

    Article  PubMed  CAS  Google Scholar 

  28. Tholanikunnel BG, Joseph K, Kandasamy K, Baldys A, Raymond JR, Luttrell LM, McDermott PJ, Fernandes DJ (2010) Novel mechanisms in the regulation of G protein-coupled receptor trafficking to the plasma membrane. J Biol Chem 285:33816–33825

    Article  PubMed  CAS  Google Scholar 

  29. Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26:191–198

    Article  PubMed  CAS  Google Scholar 

  30. Barreau C, Paillard L, Osborne HB (2006) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    Article  PubMed  Google Scholar 

  31. Nakada MT, Haskell KM, Ecker DJ, Stadel JM, Crooke ST (1989) Genetic regulation of β2-adrenergic receptors in 3T3–L1 fibroblasts. Biochem J 260:53–59

    PubMed  CAS  Google Scholar 

  32. Novotny M, Datta S, Biswas R, Hamilton T (2005) Functionally independent AU-rich sequence motifs regulate KC (CXCL1) mRNA. J Biol Chem 280:30166–30174

    Article  PubMed  CAS  Google Scholar 

  33. Wilson GM, Lu J, Sutphen K, Suarez Y, Sinha S, Brewer B, Villanueva-Feliciano EC, Ysla RM, Charles S, Brewer G (2003) Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J Biol Chem 278:33039–33048

    Article  PubMed  CAS  Google Scholar 

  34. Schmidlin M, Lu M, Leuenberger SA, Stoecklin G, Mallaun M, Gross B, Gherzi R, Hess D, Hemmings BA, Moroni C (2004) The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J 23:4760–4769

    Article  PubMed  CAS  Google Scholar 

  35. Fialcowitz EJ, Brewer BY, Keenan BP, Wilson GM (2005) A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J Biol Chem 280:22406–22417

    Article  PubMed  CAS  Google Scholar 

  36. Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, Tholanikunnel BG, Fernandes DJ, Spicer EK (2009) Regulation of Bcl-2 expression by HuR in HL 60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 8:1354–1366

    Article  Google Scholar 

  37. Ishimaru D, Zuraw L, Ramalingam S, Sengupta TK, Bandyopadhyay S, Reuben A, Fernandes DJ, Spicer EK (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and A + U-rich element-binding factor 1 (AUF1). J Biol Chem 285:27182–27192

    Article  PubMed  CAS  Google Scholar 

  38. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM (2000) Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem 275:11750–11757

    Article  PubMed  CAS  Google Scholar 

  39. Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S (2003) Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 11:113–126

    Article  PubMed  CAS  Google Scholar 

  40. Chen CY, Xu N, Shyu AB (1995) mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol Cell Biol 15:5777–5788

    PubMed  CAS  Google Scholar 

  41. Dember LM, Kim ND, Liu K-Q, Anderson P (1996) Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem 271:2783–2788

    Article  PubMed  CAS  Google Scholar 

  42. Masuyama K, Taniguchi I, Kataoka N, Ohno M (2004) RNA length defines RNA export pathway. Genes Dev 18:2074–2085

    Article  PubMed  CAS  Google Scholar 

  43. Tanguay RL, Gallie DR (1996) Translational efficiency is regulated by the length of the 3′ untranslated region. Mol Cell Biol 16:146–156

    PubMed  CAS  Google Scholar 

  44. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  PubMed  CAS  Google Scholar 

  45. Hon LS, Zhang Z (2007) The role of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 8:R166, 1–18

    Google Scholar 

  46. Santhanam AN, Bindewald E, Rajasekhar VK, Larsson O, Sonenberg N, Colburn NH, Shapiro BA (2009) Role of 3′UTRs in the translation of mRNAs regulated by oncogenic elF4E-A computational inference. PLoS One 4:e4868

    Article  PubMed  Google Scholar 

  47. Irier HA, Shaw R, Lau A, Feng Y, Dingledine R (2009) Translational regulation of GluR2 in the rat hippocampus by alternative 3′ untranslated regions. J Neurochem 109:584–594

    Article  PubMed  CAS  Google Scholar 

  48. Katsanou V, Papadaki O, Milatos S, Blackshear PJ, Anderson P, Kollias G, Kontoyiannis DL (2005) HuR as a negative posttranscriptional modulator on inflammation. Mol Cell 19:777–789

    Article  PubMed  CAS  Google Scholar 

  49. Chang Na, Yi J, Guo G, Liu X, Shang Y, Tong T, Cui Q, Zhan M, Gorospe M, Wang W (2010) HuR uses AUF1 as a cofactor to promote p16ink4 mRNA decay. Mol Cell Biol 30:3875–3886

    Article  PubMed  CAS  Google Scholar 

  50. Pesole G, Liuni S, Grillo G, Licciulli F, Mignone F, Gissi C, Saccone C (2002) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 30:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from United States Public Health Services (RO1 GM 58740), from the Mid-Atlantic Affiliate of the American Heart Association (0555470U) and a URC institutional award from the Medical University of South Carolina to BGT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baby G. Tholanikunnel.

Additional information

The authors wish it to be known that the first two authors should be regarded as joint first authors: Kothandharaman Subramaniam, Karthikeyan Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramaniam, K., Kandasamy, K., Joseph, K. et al. The 3′-untranslated region length and AU-rich RNA location modulate RNA–protein interaction and translational control of β2-adrenergic receptor mRNA. Mol Cell Biochem 352, 125–141 (2011). https://doi.org/10.1007/s11010-011-0747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0747-z

Keywords

Navigation