Molecular Genetics and Genomics

, Volume 288, Issue 3–4, pp 77–87 | Cite as

miRNA–transcription factor interactions: a combinatorial regulation of gene expression



Developmental processes require a precise spatio-temporal regulation of gene expression wherein a diverse set of transcription factors control the signalling pathways. MicroRNAs (miRNAs), a class of small non-coding RNA molecules have recently drawn attention for their prominent role in development and disease. These tiny sequences are essential for regulation of processes, including cell signalling, cell development, cell death, cell proliferation, patterning and differentiation. The consequence of gene regulation by miRNAs is similar to that by transcription factors (TFs). A regulatory cascade essential for appropriate execution of several biological events is triggered through a combinatorial action of miRNAs and TFs. These two important regulators share similar regulatory logics and bring about a cooperative action in the gene regulatory network, dependent on the binding sites present on the target gene. The review addresses the biogenesis and nomenclature of miRNAs, outlines the mechanism of action and regulation of their expression, and focuses on the combinatorial action of miRNAs and TFs for the expression of genes in various regulatory cascades.


miRNA Transcription factor Gene expression miRNA nomenclature Combinatorial regulation 



Cis-regulatory modules


Feed-forward loop






miRNA-containing ribonucleoprotein complexes


RNA-induced silencing complex


RNA interference


Small interfering RNA


Transcription factor


Transcription start site


Transcription units


  1. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105:19678–19683. doi:10.1073/pnas.0811166106 PubMedCrossRefGoogle Scholar
  2. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706. doi:10.1093/nar/gki567 PubMedCrossRefGoogle Scholar
  3. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X et al (2003) A uniform system for microRNA annotation. RNA 9:277–279. doi:10.1261/rna.2183803 PubMedCrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5 PubMedCrossRefGoogle Scholar
  5. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136:761–773. doi:10.1083/jcb.136.4.761 PubMedCrossRefGoogle Scholar
  6. Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237. doi:10.1126/science.1215704 PubMedCrossRefGoogle Scholar
  7. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. doi:10.1016/j.cell.2005.08.020 PubMedCrossRefGoogle Scholar
  8. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC et al (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13:496–506. doi:10.1016/j.ccr.2008.04.018 PubMedCrossRefGoogle Scholar
  9. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966. doi:10.1261/rna.7135204 PubMedCrossRefGoogle Scholar
  10. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529. doi:10.1073/pnas.242606799 PubMedCrossRefGoogle Scholar
  11. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101 PubMedCrossRefGoogle Scholar
  12. Callis TE, Kumar P, Seok HY, Tang RH, Tatsuguchi M, Huang ZP et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786. doi:10.1172/JCI36154 PubMedCrossRefGoogle Scholar
  13. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50. doi:10.1038/ng.2007.30 PubMedCrossRefGoogle Scholar
  14. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103. doi:10.1038/nrg1990 PubMedCrossRefGoogle Scholar
  15. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233. doi:10.1038/ng1725 PubMedCrossRefGoogle Scholar
  16. Chen CY, Chen ST, Fuh CS, Juan HF, Huang HC (2011) Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics 12:S41. doi:10.1186/1471-2105-12-S1-S41 PubMedCrossRefGoogle Scholar
  17. Cole MF, Young RA (2008) Mapping key features of transcriptional regulatory circuitry in embryonic stem cells. Cold Spring Harb Symp Quant Biol 73:183–193. doi:10.1101/sqb.2008.73.027 PubMedCrossRefGoogle Scholar
  18. Collins LJ (2011) RNA Infrastructure and Networks, Springer, London, pp 68–69Google Scholar
  19. Cui Q, Yu Z, Pan Y, Purisima EO, Wang E (2007) MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 352:733–738. doi:10.1016/j.bbrc.2006.11.080 PubMedCrossRefGoogle Scholar
  20. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235. doi:10.1038/nature03049 PubMedCrossRefGoogle Scholar
  21. Di Leva G, Calin GA, Croce CM (2006) MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today 78:180–189. doi:10.1002/bdrc.20073 PubMedCrossRefGoogle Scholar
  22. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240. doi:10.1126/science.1215691 PubMedCrossRefGoogle Scholar
  23. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136. doi:10.1038/ni1560 PubMedCrossRefGoogle Scholar
  24. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1. doi:10.1186/gb-2003-5-1-r1 PubMedCrossRefGoogle Scholar
  25. Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′ UTRs. PLoS ONE 6:e18067. doi:10.1371/journal.pone.0018067 PubMedCrossRefGoogle Scholar
  26. Fazi F, Nervi C (2008) MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 79:553–561. doi:10.1093/cvr/cvn151 PubMedCrossRefGoogle Scholar
  27. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831. doi:10.1016/j.cell.2005.09.023 PubMedCrossRefGoogle Scholar
  28. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi:10.1038/nrg2290 PubMedCrossRefGoogle Scholar
  29. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842. doi:10.1038/nrg2455 PubMedCrossRefGoogle Scholar
  30. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787. doi:10.1038/ncb1613 PubMedCrossRefGoogle Scholar
  31. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S et al (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140. doi:10.1093/nar/gkn766 PubMedCrossRefGoogle Scholar
  32. Ghani S, Riemke P, Schonheit J, Lenze D, Stumm J, Hoogenkamp M et al (2011) Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood 118:2275–2284. doi:10.1182/blood-2011-02-335141 PubMedCrossRefGoogle Scholar
  33. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111. doi:10.1093/nar/gkh023 PubMedCrossRefGoogle Scholar
  34. Griffiths-Jones S (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics 12(9):1–10. doi:10.1002/0471250953.bi1209s29 Google Scholar
  35. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi:10.1093/nar/gkj112 PubMedCrossRefGoogle Scholar
  36. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952 PubMedCrossRefGoogle Scholar
  37. Gronostajski RM (2000) Roles of the NFI/CTF gene family in transcription and development. Gene 249:31–45. doi:10.1016/S0378-1119(00)00140-2 PubMedCrossRefGoogle Scholar
  38. Guo AY, Sun J, Jia P, Zhao Z (2010) A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol 4:10. doi:10.1186/1752-0509-4-10 PubMedCrossRefGoogle Scholar
  39. Guohua W, Yadong W, Weixing F, Xin W, Jack YY, Yuming Z et al (2008) Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics 9:S22. doi:10.1186/1471-2164-9-S2-S22 Google Scholar
  40. Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6:1290–1294. doi:10.4161/cbt.6.8.4486 CrossRefGoogle Scholar
  41. Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C et al (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310. doi:10.1038/emboj.2008.244 PubMedCrossRefGoogle Scholar
  42. Hobert O (2004) Common logic of transcription factor and microRNA action. Trends Biochem Sci 29:462–468. doi:10.1016/j.tibs.2004.07.001 PubMedCrossRefGoogle Scholar
  43. Hofacker IL (2007) How microRNAs choose their targets. Nat Genet 39:1191–1192. doi:10.1038/ng1007-1191 PubMedCrossRefGoogle Scholar
  44. Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102:16961–16966. doi:10.1073/pnas.0506482102 PubMedCrossRefGoogle Scholar
  45. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. doi:10.1038/nrm2868 PubMedCrossRefGoogle Scholar
  46. Jian-Fu C, Yazhong T, Juan L, Zhongliang D, Zhen Y, Xiao X, Da-Zhi W (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190:867–879. doi:10.1083/jcb.200911036 CrossRefGoogle Scholar
  47. Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O (2005) MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci USA 102:12449–12454. doi:10.1073/pnas.0505530102 PubMedCrossRefGoogle Scholar
  48. Jopling CL, Schutz S, Sarnow P (2008) Position dependent function for a tandem microRNA miR-122-binding site located in the Hepatitis C Virus RNA genome. Cell Host Microbe 4:77–85. doi:10.1016/j.chom.2008.05.013 PubMedCrossRefGoogle Scholar
  49. Kim VN (2004) MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14:156–159. doi:10.1016/j.tcb.2004.02.006 PubMedCrossRefGoogle Scholar
  50. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. doi:10.1038/nrm1644 PubMedCrossRefGoogle Scholar
  51. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173. doi:10.1016/j.tig.2006.01.003 PubMedCrossRefGoogle Scholar
  52. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687. doi:10.1083/jcb.200603008 PubMedCrossRefGoogle Scholar
  53. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224. doi:10.1126/science.1140481 PubMedCrossRefGoogle Scholar
  54. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. doi:10.1038/nrg2843 PubMedGoogle Scholar
  55. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi:10.1126/science.1064921 PubMedCrossRefGoogle Scholar
  56. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. doi:10.1126/science.1065062 PubMedCrossRefGoogle Scholar
  57. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y PubMedCrossRefGoogle Scholar
  58. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670. doi:10.1093/emboj/cdf476 PubMedCrossRefGoogle Scholar
  59. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419. doi:10.1038/nature01957 PubMedCrossRefGoogle Scholar
  60. Lee J, Li Z, Brower-Sinning R, John B (2007) Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3:e67. doi:10.1371/journal.pcbi.0030067 PubMedCrossRefGoogle Scholar
  61. Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123:1267–1277. doi:10.1016/j.cell.2005.10.040 PubMedCrossRefGoogle Scholar
  62. Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C (2009) MicroRNAs: control and loss of control in human physiology and disease. World J Surg 33:667–684. doi:10.1007/s00268-008-9836-x PubMedCrossRefGoogle Scholar
  63. Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG (2010) MicroRNAs modulate the noncanonical NF-κB pathway by regulating IKKα expression during macrophage differentiation. Nat Immunol 11:799–805. doi:10.1038/ni.1918 PubMedCrossRefGoogle Scholar
  64. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005a) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266. doi:10.1038/ncb1333 PubMedGoogle Scholar
  65. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723. doi:10.1038/ncb1274 PubMedCrossRefGoogle Scholar
  66. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB et al (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104:20844–20849. doi:10.1073/pnas.0710558105 PubMedCrossRefGoogle Scholar
  67. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254. doi:10.1101/gad.1738708 PubMedCrossRefGoogle Scholar
  68. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702 PubMedCrossRefGoogle Scholar
  69. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561. doi:10.2174/138920210793175895 PubMedCrossRefGoogle Scholar
  70. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420. doi:10.1242/dev.024166 PubMedCrossRefGoogle Scholar
  71. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533. doi:10.1016/j.cell.2008.07.020 PubMedCrossRefGoogle Scholar
  72. Martinez NJ, Walhout AJ (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 31:435–445. doi:10.1002/bies.200800212 PubMedCrossRefGoogle Scholar
  73. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190. doi:10.1105/tpc.108.064311 PubMedCrossRefGoogle Scholar
  74. Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14:4947–4957PubMedGoogle Scholar
  75. Na X, Thales P, Guangjin P, James AT, Kenneth SK (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658. doi:10.1016/j.cell.2009.02.038 CrossRefGoogle Scholar
  76. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589. doi:10.1101/gad.1522907 PubMedCrossRefGoogle Scholar
  77. Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–540. doi:10.1016/j.tibs.2003.08.005 PubMedCrossRefGoogle Scholar
  78. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249. doi:10.1016/j.tig.2007.02.011 PubMedCrossRefGoogle Scholar
  79. Obernosterer G, Leuschner PJ, Alenius M, Martinez J (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167. doi:10.1261/rna.2322506 PubMedCrossRefGoogle Scholar
  80. O’Connell RM, Baltimore D (2012) MicroRNAs and hematopoietic cell development. Curr Top Dev Biol 99:145–174PubMedCrossRefGoogle Scholar
  81. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843. doi:10.1038/nature03677 PubMedCrossRefGoogle Scholar
  82. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680. doi:10.1006/dbio.1999.9523 PubMedCrossRefGoogle Scholar
  83. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471. doi:10.1016/j.molcel.2008.05.001 PubMedCrossRefGoogle Scholar
  84. Ow MC, Martinez NJ, Olsen PH, Silverman HS, Barrasa MI, Conradt B et al (2008) The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev 22:2520–2534. doi:10.1101/gad.1678808 PubMedCrossRefGoogle Scholar
  85. Perron MP, Provost P (2010) Protein interactions and complexes in human microRNA biogenesis and function. Front Biosci 13:2537–2547. doi:10.2741/2865 CrossRefGoogle Scholar
  86. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542. doi:10.1016/j.molcel.2006.01.031 PubMedCrossRefGoogle Scholar
  87. Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA. RNA 11:1753–1761. doi:10.1261/rna.2248605 PubMedCrossRefGoogle Scholar
  88. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by let-7 microRNA in human cells. Science 309:1573–1576. doi:10.1126/science.1115079 PubMedCrossRefGoogle Scholar
  89. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613. doi:10.1073/pnas.0707594105 PubMedCrossRefGoogle Scholar
  90. Pospisil V, Vargova K, Kokavec J, Rybarova J, Savvulidi F, Jonasova A et al (2011) Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J 30:4450–4464. doi:10.1038/emboj.2011.317 PubMedCrossRefGoogle Scholar
  91. Qiu C, Wang J, Yao P, Wang E, Cui Q (2010) microRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol 4:90. doi:10.1186/1752-0509-4-90 PubMedCrossRefGoogle Scholar
  92. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG (1998) CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 18:4301–4314PubMedGoogle Scholar
  93. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726. doi:10.1073/pnas.0602831103 PubMedCrossRefGoogle Scholar
  94. Reshmi G, Sona C, Pillai MR (2011) Comprehensive patterns in microRNA regulation of transcription factors during tumor metastasis. J Cell Biochem 112:2210–2217. doi:10.1002/jcb.23148 PubMedCrossRefGoogle Scholar
  95. Saini HK, Griffiths-Jones S, Enright A (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104:17719–17724. doi:10.1073/pnas.0703890104 PubMedCrossRefGoogle Scholar
  96. Saini HK, Enright AJ, Griffiths-Jones S (2008) Annotation of mammalian primary microRNAs. BMC Genomics 9:564. doi:10.1186/1471-2164-9-564 PubMedCrossRefGoogle Scholar
  97. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian micro-RNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202. doi:10.1007/s00335-005-0066-3 PubMedCrossRefGoogle Scholar
  98. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA–transcription factor regulatory network. PLoS Comput Biol 3:131. doi:10.1371/journal.pcbi.0030131 CrossRefGoogle Scholar
  99. Shalgi R, Brosh R, Oren M, Pilpel Y, Rotter V (2009) Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging 1:762–770PubMedGoogle Scholar
  100. Shivdasani RA, Orkin SH (1996) The transcriptional control of hematopoiesis. Blood J 87:4025–4039Google Scholar
  101. Shruti K, Shrey K, Vibha R (2011) Micro RNAs: tiny sequences with enormous potential. Biochem Biophys Res Commun 407:445–449. doi:10.1016/j.bbrc.2011.03.058 PubMedCrossRefGoogle Scholar
  102. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146. doi:10.1016/j.cell.2005.11.023 PubMedCrossRefGoogle Scholar
  103. Su N, Wang Y, Qian M, Deng M (2010) Combinatorial regulation of transcription factors and microRNAs. BMC Syst Biol 4:150. doi:10.1186/1752-0509-4-150 PubMedCrossRefGoogle Scholar
  104. Takahashi K (2001) Development and differentiation of macrophages and related cells: historical review and current concepts. J Clin Exp Hematop 41:1–33CrossRefGoogle Scholar
  105. Tomari Y, Zamore PD (2005) MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol 15:R61–R64. doi:10.1016/j.cub.2004.12.057 PubMedCrossRefGoogle Scholar
  106. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032. doi:10.1073/pnas.0805038105 PubMedCrossRefGoogle Scholar
  107. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E et al (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862. doi:10.1016/S0092-8674(01)00404-4 PubMedCrossRefGoogle Scholar
  108. Wang Y, Keys DN, Au-Young JK, Chen C (2009) MicroRNAs in embryonic stem cells. J Cell Physiol 218:251–255. doi:10.1002/jcp.21607 PubMedCrossRefGoogle Scholar
  109. Winter J, Diederichs S (2011) MicroRNA biogenesis and cancer. Methods Mol Biol 676:3–22. doi:10.1158/0008-5472.CAN-05-0298 PubMedCrossRefGoogle Scholar
  110. Wu L, Belasco JG (2008) Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 29:1–7. doi:10.1016/j.molcel.2007.12.010 PubMedCrossRefGoogle Scholar
  111. Yiming Z, John F, Joseph TC, Yuval K (2007) Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics 8:396. doi:10.1186/1471-2164-8-396 CrossRefGoogle Scholar
  112. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832. doi:10.1242/jcs.02908 PubMedCrossRefGoogle Scholar
  113. Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197. doi:10.1016/j.tibs.2007.02.006 PubMedCrossRefGoogle Scholar
  114. Zhou P, He A, Pu WT (2012) Regulation of GATA4 Transcriptional activity in cardiovascular development and disease. Curr Top Dev Biol 100:143–169. doi:10.1016/B978-0-12-387786-4.00005-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Arora
    • 1
  • R. Rana
    • 1
  • A. Chhabra
    • 1
  • A. Jaiswal
    • 1
  • V. Rani
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations