Skip to main content
Log in

Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The sRNA RprA is known to activate rpoS translation in E. coli in an osmolarity-dependent manner. We asked whether RprA stability contributes to osmolarity-dependent regulation and how the RNA binding protein Hfq and the major E. coli endonucleases contribute to this turn-over. The study reveals that osmolarity-dependent turn-over of RprA indeed contributes to its osmolarity-dependent abundance. RprA is stabilized by the RNA chaperone Hfq and in absence of Hfq its turn-over is no longer osmolarity-dependent. The stability of the RprA target mRNA rpoS shows a lower extent of osmolarity dependence, which differs from the profile observed for RprA. Thus, the effect of sucrose is specific for individual RNAs. We can attribute a role of the endoribonuclease RNase E in turn-over of RprA and an indirect effect of the endoribonuclease III in vivo. In addition, RprA is stabilized by the presence of rpoS suggesting that hybrid formation with its target may protect it against ribonucleases. In vitro RprA is cleaved by the RNase E containing degradosome and by RNase III and rpoS interferes with RNase III cleavage. We also show that temperature affects the stabilities of the sRNAs binding to rpoS and of rpoS mRNA itself differentially and that higher stability of DsrA with decreasing temperature may contribute to its high abundance at lower temperatures. This study demonstrates that environmental parameters can affect the stability of sRNAs and consequently their abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR (2005) Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res 33(5):1678–1689. doi:10.1093/nar/gki313

    Article  CAS  PubMed  Google Scholar 

  • Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11(12):941–950. doi:S0960-9822(01)00270-6

    Article  CAS  PubMed  Google Scholar 

  • Basineni SR, Madhugiri R, Kolmsee T, Hengge R, Klug G (2009) The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol 6(5):584–594

    Article  CAS  PubMed  Google Scholar 

  • Becker G, Klauck E, Hengge-Aronis R (1999) Regulation of RpoS proteolysis in Escherichia coli: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci USA 96(11):6439–6444

    Article  CAS  PubMed  Google Scholar 

  • Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G (2009) Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol Microbiol 74(6):1497–1512. doi:10.1111/j.1365-2958.2009.06949.x

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The Complete Genome Sequence of Escherichia coli K-12. Science 277:1453–1462

  • Brandi A, Pietroni P, Gualerzi CO, Pon CL (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol 19(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87. doi:10.1146/annurev.micro.61.080706.093440

    Article  CAS  PubMed  Google Scholar 

  • Conrad C, Rauhut R, Klug G (1998) Different cleavage specificities of RNase III from Rhodobacter capsulatus and Escherichia coli. Nucleic Acids Res 26(19):4446–4453

    Article  CAS  PubMed  Google Scholar 

  • Frohlich KS, Vogel J (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12(6):674–682. doi:10.1016/j.mib.2009.09.009

    Article  PubMed  Google Scholar 

  • Goldblum K, Apririon D (1981) Inactivation of the ribonucleic acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol 146(1):128–132

    CAS  PubMed  Google Scholar 

  • Goldenberg D, Azar I, Oppenheim AB (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19(2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Heck C, Rothfuchs R, Jager A, Rauhut R, Klug G (1996) Effect of the pufQpufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol Microbiol 20(6):1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R (2002) Stationary phase gene regulation: what makes an Escherichia coli promoter sigma S—selective? Curr Opin Microbiol 5(6):591–595. doi:S1369527402003727

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Fuhrmann O, Heck C, Hebermehl M, Schiltz E, Rauhut R, Klug G (2001) An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res 29(22):4581–4588

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Evguenieva-Hackenberg E, Klug G (2004) Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. Microbiology 150(Pt 3):687–695

    Article  PubMed  Google Scholar 

  • Mackie GA (1992) Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. J Biol Chem 267(2):1054–1061

    CAS  PubMed  Google Scholar 

  • Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 95(21):12462–12467

    Article  CAS  PubMed  Google Scholar 

  • Majdalani N, Chen S, Murrow J, St John K, Gottesman S (2001) Regulation of RpoS by a novel small RNA: The characterization of RprA. Mol Microbiol 39(5):1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46(3):813–826

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17(19):2374–2383. doi:10.1101/gad.11271031127103

    Article  CAS  PubMed  Google Scholar 

  • Py B, Causton H, Mudd EA, Higgins CF (1994) A protein complex mediating mRNA degradation in Escherichia coli. Mol Microbiol 14(4):717–729

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen AA, Eriksen M, Gilany K, Udesen C, Franch T, Petersen C, Valentin-Hansen P (2005) Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol Microbiol 58(5):1421–1429. doi:10.1111/j.1365-2958.2005.04911.x

    Article  CAS  PubMed  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23(3):353–370. doi:S0168-6445(99)00012-1

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach B, Maes A, Kalamorz F, Hajnsdorf E, Gorke B (2008) The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res 36(8):2570–2580. doi:10.1093/nar/gkn091

    Article  CAS  PubMed  Google Scholar 

  • Repoila F, Gottesman S (2001) Signal transduction cascade for regulation of RpoS: Temperature regulation of DsrA. J Bacteriol 183(13):4012–4023. doi:10.1128/JB.183.13.4012-4023.2001

    Article  CAS  PubMed  Google Scholar 

  • Repoila F, Gottesman S (2003) Temperature sensing by the dsrA promoter. J Bacteriol 185(22):6609–6614

    Article  CAS  PubMed  Google Scholar 

  • Repoila F, Majdalani N, Gottesman S (2003) Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48(4):855–861

    Article  CAS  PubMed  Google Scholar 

  • Resch A, Afonyushkin T, Lombo TB, McDowall KJ, Blasi U, Kaberdin VR (2008) Translational activation by the noncoding RNA DsrA involves alternative RNase III processing in the rpoS 5′-leader. RNA 14(3):454–459. doi:10.1261/rna.603108

    Article  CAS  PubMed  Google Scholar 

  • Robert-Le Meur M, Portier C (1992) E. coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism. EMBO J 11(7):2633–2641

    CAS  PubMed  Google Scholar 

  • Schweder T, Lee KH, Lomovskaya O, Matin A (1996) Regulation of Escherichia coli starvation sigma factor (sigma S) by ClpXp protease. J Bacteriol 178(2):470–476

    CAS  PubMed  Google Scholar 

  • Sledjeski D, Gottesman S (1995) A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci USA 92(6):2003–2007

    Article  CAS  PubMed  Google Scholar 

  • Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15(15):3993–4000

    CAS  PubMed  Google Scholar 

  • Sledjeski DD, Whitman C, Zhang A (2001) Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183(6):1997–2005. doi:10.1128/JB.183.6.1997-2005.2001

    Article  CAS  PubMed  Google Scholar 

  • Studier F (1975) Genetic mapping of a mutation that causes ribonuclease III deficiency in Escherichia coli. J Bacteriol 124:307–316

    CAS  PubMed  Google Scholar 

  • Updegrove T, Wilf N, Sun X, Wartell RM (2008) Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5′ rpoS mRNA leader region. Biochemistry 47(43):11184–11195. doi:10.1021/bi800479p

    Article  CAS  PubMed  Google Scholar 

  • Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35(3):1018–1037. doi:10.1093/nar/gkl1040

    Article  CAS  PubMed  Google Scholar 

  • Valverde C, Haas D (2008) Small RNAs controlled by two-component systems. Adv Exp Med Biol 631:54–79. doi:10.1007/978-0-387-78885-2_5

    Article  PubMed  Google Scholar 

  • Vecerek B, Beich-Frandsen M, Resch A, Blasi U (2010) Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Res 38:1284–1293. doi:10.1093/nar/gkp1125

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Argaman L, Wagner EG, Altuvia S (2004) The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr Biol 14(24):2271–2276. doi:10.1016/j.cub.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9(1):11–22. doi:S1097276501004373

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christian Lassek and Joachim Berk for assistance in performing the experiments. We also thank Prof. Poul Valentin-Hansen, University of Southern Denmark, for kindly providing us antibodies against Hfq. This work was supported by Deutsche Forschungsgemeinschaft (DFG Kl563/19-1) and a DAAD fellowship to RM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Klug.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhugiri, R., Basineni, S.R. & Klug, G. Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Mol Genet Genomics 284, 307–318 (2010). https://doi.org/10.1007/s00438-010-0568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0568-x

Keywords

Navigation