Skip to main content

Analysis of sRNAs and Their mRNA Targets in Sinorhizobium meliloti: Focus on Half-Life Determination

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

  • 341 Accesses

Abstract

Regulation of gene expression at the level of RNA and/or by regulatory RNA is an integral part of the regulatory circuits in all living cells. In bacteria, transcription and translation can be coupled, enabling regulation by transcriptional attenuation, a mechanism based on mutually exclusive structures in nascent mRNA. Transcriptional attenuation gives rise to small RNAs that are well suited to act in trans by either base pairing or ligand binding. Examples of 5′-UTR-derived sRNAs in the alpha-proteobacterium Sinorhizobium meliloti are the sRNA rnTrpL of the tryptophan attenuator and SAM-II riboswitch sRNAs. Analyses addressing RNA-based gene regulation often include measurements of steady-state levels and of half-lives of specific sRNAs and mRNAs. Using such measurements, recently we have shown that the tryptophan attenuator responds to translation inhibition by tetracycline and that SAM-II riboswitches stabilize RNA. Here we discuss our experience in using alternative RNA purification methods for analysis of sRNA and mRNA of S. meliloti. Additionally, we show that other translational inhibitors (besides tetracycline) also cause attenuation giving rise to the rnTrpL sRNA. Furthermore, we discuss the importance of considering RNA stability changes under different conditions and describe in detail a robust and fast method for mRNA half-life determination. The latter includes rifampicin treatment, RNA isolation using commercially available columns, and mRNA analysis by reverse transcription followed by quantitative PCR (RT-qPCR). The latter can be performed as a one-step procedure or in a strand-specific manner using the same commercial kit and a spike-in transcript as a reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae YM, Crawford IP (1990) The Rhizobium meliloti trpE(G) gene is regulated by attenuation, and its product, anthranilate synthase, is regulated by feedback inhibition. J Bacteriol 172:3318–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merino E, Jensen RA, Yanofsky C (2008) Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 11:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evguenieva-Hackenberg E (2022) Riboregulation in bacteria: from general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. Wiley Interdiscip Rev RNA 13:e1696

    Article  CAS  PubMed  Google Scholar 

  4. Melior H, Li S, Madhugiri R, Stötzel M et al (2019) Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Res 47:6396–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stroynowski I, van Cleemput M, Yanofsky C (1982) Superattenuation in the tryptophan operon of Serratia marcescens. Nature 298:38–41

    Article  CAS  PubMed  Google Scholar 

  6. Melior H, Li S, Stötzel M et al (2021) Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Res 49:2894–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein JA, Khodursky AB, Lin PH et al (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99:9697–9702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klug G (1991) Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen. Proc Natl Acad Sci U S A 88:1765–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stead MB, Agrawal A, Bowden KE et al (2012) RNAsnap™: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res 40:e156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Damm K, Bach S, Müller KM et al (2015) Impact of RNA isolation protocols on RNA detection by Northern blotting. Methods Mol Biol 1296:29–38

    Article  CAS  PubMed  Google Scholar 

  11. Scheuer R, Dietz T, Kretz J et al (2022) Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance. RNA Biol 19:980–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Massé E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schu DJ, Zhang A, Gottesman S, Storz G (2015) Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34:2557–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baumgardt K, Charoenpanich P, McIntosh M et al (2014) RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti. J Bacteriol 196:1435–1447

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eda S, Mitsui H, Minamisawa K (2011) Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol 77:2855–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evguenieva-Hackenberg E (2005) Bacterial ribosomal RNA in pieces. Mol Microbiol 57:318–325

    Article  CAS  PubMed  Google Scholar 

  18. McIntosh M, Krol E, Becker A (2008) Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti. J Bacteriol 190:5308–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) grant Ev42/6-2 and GRK2355 project number 325443116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Evguenieva-Hackenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scheuer, R., Kothe, J., Wähling, J., Evguenieva-Hackenberg, E. (2024). Analysis of sRNAs and Their mRNA Targets in Sinorhizobium meliloti: Focus on Half-Life Determination. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics