Skip to main content
Log in

Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing (“velvet”) antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10–30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5′ cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC–MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AGC:

Antler growth center

BMD:

Bone mineral density

BMP:

Bone morphogenetic protein

BGLAP:

Human ortholog of osteocalcin

CGRP:

Calcitonin gene-related peptide

Col1A1:

Collagen alpha-1(I) chain

CVA:

Canonical variates analysis/discriminant analysis

ECM:

Extracellular matrix

FGF2:

Fibroblast growth factor 2

GC–MS:

Gas chromatography–mass spectrometry

Oc:

Osteocalcin, human ortholog BGLAP

Osx:

Osterix

PBS:

Phosphate-buffered saline

PCA:

Principal components analysis

PNP:

Non-osteoporotic patients

PP:

Patients affected with age-related osteoporosis

PTH:

Parathyroid hormone

PTHrP:

Parathyroid hormone-related protein

Runx2:

Runt-related transcription factor 2

TGF:

Transforming growth factor

TGFβ:

Transforming growth factor beta

References

  • Alvarez L, Oriola J, Jo J, Ferró T, Pons F, Peris P, Guañabens N, Durán M, Monegal A, Martínez de Osaba MJ, Rivera-Fillat F, Ballesta AM (1999) Collagen type I alpha1 gene Sp1 polymorphism in premenopausal women with primary osteoporosis: improved detection of Sp1 binding site polymorphism in the collagen type 1 gene. Clin Chem 45(6 Pt 1):904–906

    CAS  PubMed  Google Scholar 

  • Balla B, Kósa JP, Kiss J, Borsy A, Podani J, Takács I, Lazáry Á, Nagy Zs, Bácsi K, Speer G, Orosz L, Lakatos P (2007) Different gene expression patterns in the bone tissue of aging postmenopausal osteoporotic women. Calcif Tissue Int 82(1):12–26

    Article  PubMed  Google Scholar 

  • Banks WJ, Newbray JW (1981a) Antler development as a unique modification of mammalian endochondral ossification, Fig. 6. Antler development of Cervidae (part II, Ed. Brown RD) Texas A I University Kingsvile, Texas 78363:285

  • Banks WJ, Newbrey JW (1981b) Antler development as a unique modification of mammalian endochondral ossification, Fig. 12. Antler development of Cervidae (part II, Ed. Brown RD) Texas A I University Kingsvile, Texas 78363:285

  • Banks WJ, Newbrey JW (1983) Light microscopic studies of the ossification process in developing antlers. In: Brown RD (ed) Antler development in Cervidae. Caesar Kleburg Wildlife Research Institute, Kingsville, pp 231–260

    Google Scholar 

  • Banks W, Epling J, Kainer R, Davis R (1968a) Antler growth and osteoporosis, I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anat Rec 162:387–398

    Article  PubMed  Google Scholar 

  • Banks W, Epling J, Kainer R, Davis R (1968b) Antler growth and osteoporosis, II. Gravimetric and chemical changes in the antler growth cycle. Anat Rec 162:399–406

    Article  CAS  PubMed  Google Scholar 

  • Barta E, Sebestyén E, Pálfy TB, Tóth G, Ortutay CP, Patthy L (2005) DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants. Nucleic Acids Res 33(Database issue):D86–D90

    Article  CAS  PubMed  Google Scholar 

  • Borsy A, Podani J, Stéger V, Balla B, Horváth A, Kósa JP, Gyurján I Jr, Molnár A, Szabolcsi Z, Szabó L, Jakó E, Zomborszky Z, Nagy J, Semsey S, Vellai T, Lakatos P, Orosz L (2009) Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol Genet Genomics 281:301–313

    Google Scholar 

  • Bubenik GA (1990) The role of the nervous system in the growth of antlers. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns and antlers. Springer, Hamburg, pp 339–358

  • Chapman D, Larkmead, Mills B, Bury S (1975) Antler-bone of contention. Mammal Rev 5:No. 4

  • Faucheux C, Price JS (1999): Parathyroid hormone-related peptide may play a role in deer antler regeneration. In: Danks J, Dacke C Flik G, Gay C (ed): Calcium metabolism: comparative endocrinology. BioScientifica Ltd, Bristol. pp 131–138

  • Faucheux C, Horton MA, Price JS (2002) Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-kappaB-dependent effects on osteoclast formation in regenerating mammalian bone. J Bone Miner Res 17:455–464

    Article  CAS  PubMed  Google Scholar 

  • Feng JQ, Chen D, Esparza J, Harris MA, Mundy GR, Harris SE (1995) Deer antler tissue contains two types of bone morphogenetic protein 4 mRNA transcripts. Biochim Biophys Acta 1263:163–168

    PubMed  Google Scholar 

  • Feng JQ, Chen D, Ghosh-Choudhury N, Esparza J, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 transcripts in rapidly developing deer antler tissue contain an extended 5′ non-coding region arising from a distal promoter. Biochim Biophys Acta 1350:47–52

    CAS  PubMed  Google Scholar 

  • Francis SM, Suttie JM (1998) Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J Exp Zool 281:36–42

    Article  CAS  PubMed  Google Scholar 

  • Galamb O, Spisák S, Sipos F, Tóth K, Solymosi N, Wichmann B, Krenács T, Valcz G, Tulassay Z, Molnár B (2010) Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer 102(4):765–773

    Article  CAS  PubMed  Google Scholar 

  • Gray C, Hukkanen M, Konttinen YT, Terenghi G, Arnett TR et al (1992) Rapid neural growth: calcitonin gene-related peptide and substance P-containing nerves attain exceptional growth rates in regenerating deer antler. Neuroscience 50:953–963

    Article  CAS  PubMed  Google Scholar 

  • Gyurján J-I, Molnár A, Borsy A, Stéger V, Hackler J-L, Zomborszky Z, Papp P, Duda E, Deák F, Lakatos P, Puskás LG, Orosz L (2007) Gene expression dynamics in deer antler: mesenchymal differentiation toward chondrogenesis. Mol Genet Genomics 277:221–235

    Article  PubMed  Google Scholar 

  • Hock J, Centrella M, Canalis E (1988) Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122:254–260

    Article  CAS  PubMed  Google Scholar 

  • Jin H, van’t Hof R, Albagha O, Ralston S (2009) Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 18(15):2729–2738

    Article  CAS  PubMed  Google Scholar 

  • Kohen MM Jr (2009) Perspectives on RUNX genes: an update. Am J Med Genet A 149A(12):2629–2646

    Article  Google Scholar 

  • Komori T (2010) Regulation of bone development, extracellular matrix protein genes by RUNX2. Cell Tissue Res 9(1):189–195

    Article  Google Scholar 

  • Korpos É, Molnár A, Papp P, Kiss I, Orosz L, Deák F (2005) Expression pattern of matrilins and other extracellular matrix proteins characterize distinct stages of cell differentiation during antler development. Matrix Biol 24:124–135

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol 204:375–388

    Article  CAS  PubMed  Google Scholar 

  • Li C, Clark DE, Lord EA, Stanton J, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268:125–130

    Article  CAS  PubMed  Google Scholar 

  • Moen R, Pastor J (1996) Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou. Rangifer, Special Issue 10:85–98

    Google Scholar 

  • Moen R, Pastor J, Cohen Y (1999) Antler growth and extinction of Irish elk. Evol Ecol Res 1:235–249

    Google Scholar 

  • Molnar A, Gyurjan I, Korpos E, Borsy A, Steger V, Buzas Z, Kiss I, Zomborszky Z, Papp P, Deak F, Orosz L (2007) Identification of differentially expressed genes in the developing antler of red deer Cervus elaphus. Mol Genet Genomics 277:237–248

    Article  CAS  PubMed  Google Scholar 

  • Mundy G, Gutierrez G, Gallwitz W et al (2001) Antler-derived bone growth factors and their potential for use in osteoporosis. In: Sim JS, Sunwoo HH, Hudson RJ, Jeon BT (eds) Antler science and product technology. Antler Science and Production Technology Research Centre, Canada, pp 171–187

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Min D, Behringer R, Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova V, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford M, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138(1):304–318

    Article  CAS  PubMed  Google Scholar 

  • Podani J (2001) SYN-TAX 2000 user’s manual. Scientia Publishing, Budapest

    Google Scholar 

  • Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond 359:809–822

    Article  CAS  Google Scholar 

  • Price J, Oyajobi O, Nalin M, Frazer A, Russell G, Sandell J (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 205:332–347

    Article  CAS  PubMed  Google Scholar 

  • Price J, Allen S, Faucheux C, Althanaian T, Mount J (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207:603–618

    Article  CAS  PubMed  Google Scholar 

  • Puskás L, Hackler L Jr, Kovács G, Kupihár Z, Zvara A, Micsik T, van Hummelen P (2002) Recovery of cyanine-dye nucleotide triphosphates. Anal Biochem 305(2):279–281

    Article  PubMed  Google Scholar 

  • Rucklidge GJ, Milne G, Bos KJ, Farquharson C, Robins SP (1997) Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp Biochem Physiol B Biochem Mol Biol 118:303–308

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Methods of screening. In: Nolan C (ed) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Siebel M, Eastell R, Gundberg C, Hannon R, Pols H (2002) Biochemical markers of bone metabolism in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology, Academic press, New York, pp 1543–1549

  • Stein G, Lian J, Montecino M, Wijnen A, Stein J, Javed A, Zaidi K (2002) Involvement of nuclear architecture in regulating gene expression in bone cells in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology, Academic press, New York, pp 177–178

  • Vignery A, Mcarthy TL (1996) The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone 18:331

    Article  CAS  PubMed  Google Scholar 

  • Villányi Z, Gyurján I, Stéger V, Orosz L (2008) Plaque based competitive hybridization. J Biomol Screen 13:80–84

    Article  PubMed  Google Scholar 

  • Whyte M (2002) Hypophosphatasia in bk. In: Bilezikian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic press, New York, pp 1235–1236

  • Yang C, Wang Z, Zhao H, Yao Y, Chen P (2009) The regulatory effect of calcitonin gene-related peptide on bone metabolism of osteoblast cells co-cultured with breast cancer cells. Tumor 29(9):833–837

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Magdolna Tóth Péli, Csilla Sánta Török, Kornélia Szóráth Gálné for excellent technical assistance, to MSc students András Berta and Attila Hegedűs (ELTE, Budapest) for enthusiastic help. Thanks are due to Péter Orosz and Natalia Polgár for critical reading of the manuscript, and to Sankar Adhya (NIH, Bethesda), László Sugár (U. Kaposvár), Ernő Duda (BRC, Szeged) and János Szabad (U. Szeged), Sándor Spisák, Bernadett Balla and János Kósa (SOTE, Budapest) for their constant interest. This work was supported by grants OTKA T032205 to L.O., OM 0320/2004 to L.O., NKFP 1A/007/2004 to L.O. and P.L., 454/2003 and 006/2009 from the Ministry of Health, Social and Family Affairs, ETT-ESKI to L.O., OTKA PD75496 to S.S., and by the János Bolyai fellowship of the HAS to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Orosz.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. S1

(A) Antlerogenesis cycle of red deer stag, Cervus elaphus , (B) Bone structure at three time of the antler cycle : cross sections of flying ribs (left), corresponding scanning electron microscopic picture (right) (TIFF 691 kb)

ESM Fig. S2

Northern blot analyses of gene expressions. Antler tissues: FC foetal cartilage , RM reserve mesenchyme, PC precartilage , C cartilage , AB antler bone; Skeletal bones : VB vertebral bone , RB rib bone, ibsp* example for longer exposition. Note the robust expressions in AB versus VB and RB and the cartilage specific expression of col2A1. Stag 1 was in velvet antler development and skeletal osteoporosis status; Stag 2, in the period of late autumn dwell status when mineral mobilization and deposition are dynamically equilibrated – BMD is in steady state. Stag 3, in the velvet shedding, skeletal regenerating status. (For more information see Materials and Methods, ESM Fig. S1 and Borsy et al. 2009) (TIFF 327 kb)

ESM Fig. S3

In situ hybridization of gene expressions for col3A1 and col10A1 (mRNA-s) in velvet antler tissues. Analyses of 8 μm thick longitudinal sections (RM) from mesenchymal region, (PC) from precartilage, (C) from cartilage. Note the very specific expression of col10A1 in hiperthrophic cartilage cells and the prominent expression of col3A1 in the mesenchyme and cartilage cells. Bars: 0.25 mm and 0.1 mm in the corners lower left (the higher magnifications). (TIFF 418 kb)

ESM Fig. S4

The DNA sequences for the 1 Kb promoter regions and the 1st exons plus 1245 intronic region of orthologs col1A1 genes of human, bovine and deer with Runx2 binding sites underlined. (DOC 117 kb)

ESM Fig. S5

The DNA sequences for the 1 Kb promoter regions and the 1st exons plus 1245 intronic region of orthologs col1A1 genes of human, bovine and deer with Osterix binding sites underlined. (DOC 104 kb)

Supplementary material 6 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stéger, V., Molnár, A., Borsy, A. et al. Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes. Mol Genet Genomics 284, 273–287 (2010). https://doi.org/10.1007/s00438-010-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0565-0

Keywords

Navigation