Skip to main content
Log in

Characterizing the transcriptional regulation of let-721, a Caenorhabditis elegans homolog of human electron flavoprotein dehydrogenase

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

LET-721 is the Caenorhabditis elegans ortholog of electron-transferring flavoprotein dehydrogenase (ETFDH). We are studying this protein in C. elegans in order to establish a tractable model system for further exploration of ETFDH structure and function. ETFDH is an inner mitochondrial membrane localized enzyme that plays a key role in the beta-oxidation of fatty acids and catabolism of amino acids and choline. ETFDH accepts electrons from at least twelve mitochondrial matrix flavoprotein dehydrogenases via an intermediate dimer protein and transfers the electrons to ubiquinone. In humans, ETFDH mutations result in the autosomal recessive metabolic disorder, multiple acyl-CoA dehydrogenase deficiency. Mutants of let-721 in C. elegans are either maternal effect lethals or semi-sterile. let-721 is transcribed in the pharynx, body wall muscle, hypoderm, intestine and somatic gonad. In addition, the subcellular localization of LET-721 agrees with predictions that it is localized to mitochondria. We identified and confirmed three cis-regulatory sequences (pha-site, rep-site, and act-site). Phylogenetic footprinting of each site indicates that they are conserved between four Caenorhabditis species. The pha-site mapped roughly 1,300 bp upstream of let-721’s translational start site and is necessary for expression in pharyngeal tissues. The rep-site mapped roughly 830 bp upstream of the translational start site and represses expression of LET-721 within pharyngeal tissues. The act-site mapped roughly 800 bp upstream of the translational start site and is required for expression within spermatheca, body wall muscle, pharynx, and intestine. Taken together, we find that LET-721 is a mitochondrially expressed protein that is under complex transcriptional controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aboobaker AA, Blaxter ML (2000) Medical significance of Caenorhabditis elegans. Ann Med 32:23–30

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Angle B, Burton BK (2008) Risk of sudden death and acute life-threatening events in patients with glutaric acidemia type II. Mol Genet Metab 93:36–39

    Article  CAS  PubMed  Google Scholar 

  • Beckmann JD, Frerman FE (1985) Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry 24:3913–3921

    Article  CAS  PubMed  Google Scholar 

  • Beresford MW, Pourfarzam M, Turnbull DM, Davidson JE (2006) So doctor, what exactly is wrong with my muscles? Glutaric aciduria type II presenting in a teenager. Neuromuscular Disord 16:269–273

    Article  Google Scholar 

  • Blumenthal T, Gleason KS (2003) Caenorhabditis elegans operons: form and function. Nat Rev Genet 4:112–120

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, Kim SK (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854

    Article  CAS  PubMed  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR (2009) Intermediary metabolism. In: WormBook (ed) The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.146.1, http://www.wormbook.org

  • Bratic I, Hench J, Henriksson J, Antebi A, Burglin TR, Trifunovic A (2009) Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Res 37:1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  Google Scholar 

  • Brown CT, Xie Y, Davidson EH, Cameron RA (2005) Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison. BMC Bioinform 6:70

    Article  Google Scholar 

  • Burns AR, Kwok TC, Howard A, Houston E, Johanson K, Chan A, Cutler SR, McCourt P, Roy PJ (2006) High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc 1:1906–1914

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chandler RJ, Venditti CP (2005) Genetic and genomic systems to study methylmalonic acidemia. Mol Genet Metab 86:34–43

    Article  CAS  PubMed  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  PubMed  Google Scholar 

  • Colevas AD, Edwards JL, Hruban RH, Mitchell GA, Valle D, Hutchins GM (1988) Glutaric acidemia type II comparison of pathologic features in two infants. Arch Pathol Lab Med 112:1133–1139

    CAS  PubMed  Google Scholar 

  • Colombo I, Finocchiaro G, Garavaglia B, Garbuglio N, Yamaguchi S, Frerman FE, Berra B, DiDonato S (1994) Mutations and polymorphisms of the gene encoding the beta-subunit of the electron transfer flavoprotein in three patients with glutaric acidemia type II. Hum Mol Genet 3:429–435

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Han M (2003) Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. Dev Biol 257:104–116

    Article  CAS  PubMed  Google Scholar 

  • Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877

    Article  CAS  PubMed  Google Scholar 

  • Frerman FE (1988) Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans 16:416–418

    CAS  PubMed  Google Scholar 

  • Frerman FE, Goodman SI (2001) Defects of electron transfer flavoprotein and electron transfer flavoprotein-ubiquinone oxidoreductase: glutaric acidemia type II. McGraw-Hill, New York

  • Gaudet J, Mango SE (2002) Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295:821–825

    Article  CAS  PubMed  Google Scholar 

  • Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BG, Hans VH, Palmafy B, Kale G, Tokatli A, Quinzii C, Hirano M, Naini A, DiMauro S, Prokisch H, Lochmuller H, Horvath R (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044

    Article  PubMed  Google Scholar 

  • Goffart S, Wiesner RJ (2003) Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88:33–40

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Binard RJ, Woontner MR, Frerman FE (2002) Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene. Mol Genet Metab 77:86–90

    Article  CAS  PubMed  Google Scholar 

  • Grad LI, Lemire BD (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 13:303–314

    Article  CAS  PubMed  Google Scholar 

  • Gregersen N (1985) Riboflavin-responsive defects of beta-oxidation. J Inherit Metab Dis 8(Suppl 1):65–69

    Google Scholar 

  • Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P (2008) Mitochondrial fatty acid oxidation defects—remaining challenges. J Inherit Metab Dis 31:643–657

    Article  CAS  PubMed  Google Scholar 

  • Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D (1999) Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 212:101–123

    Article  CAS  PubMed  Google Scholar 

  • Henriques BJ, Rodrigues JV, Olsen RK, Bross P, Gomes CM (2009) Role of flavinylation in a mild variant of multiple acyl-CoA dehydrogenation deficiency: a molecular rationale for the effects of riboflavin supplementation. J Biol Chem 284:4222–4229

    Article  CAS  PubMed  Google Scholar 

  • Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32:728–730

    CAS  PubMed  Google Scholar 

  • Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SE (1998) pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 12:1947–1952

    Article  CAS  PubMed  Google Scholar 

  • Huang LS, Sternberg PW (1995) Genetic dissection of developmental pathways. Methods Cell Biol 48:97–122

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Pleasance ED, Maydan JS, Hunt-Newbury R, O’Neil NJ, Mah A, Baillie DL, Marra MA, Moerman DG, Jones SJ (2007) Identification and analysis of internal promoters in Caenorhabditis elegans operons. Genome Res 17:1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237

    Article  PubMed  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (2005) The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760

    Article  CAS  PubMed  Google Scholar 

  • Janke DL, Schein JE, Ha T, Franz NW, O’Neil NJ, Vatcher GP, Stewart HI, Kuervers LM, Baillie DL, Rose AM (1997) Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans. Genome Res 7:974–985

    CAS  PubMed  Google Scholar 

  • Kelly WG, Fire A (1998) Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125:2451–2456

    CAS  PubMed  Google Scholar 

  • Kuhnl J, Bobik T, Procter JB, Burmeister C, Hoppner J, Wilde I, Luersen K, Torda AE, Walter RD, Liebau E (2005) Functional analysis of the methylmalonyl-CoA epimerase from Caenorhabditis elegans. FEBS J 272:1465–1477

    Article  PubMed  Google Scholar 

  • Kwok TC, Ricker N, Fraser R, Chan AW, Burns A, Stanley EF, McCourt P, Cutler SR, Roy PJ (2006) A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441:91–95

    Article  CAS  PubMed  Google Scholar 

  • Liang WC, Ohkuma A, Hayashi YK, Lopez LC, Hirano M, Nonaka I, Noguchi S, Chen LH, Jong YJ, Nishino I (2009) ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscular Disord 19:212–216

    Article  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  CAS  PubMed  Google Scholar 

  • McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L, Goszczynski B, Ha E, Halfnight E, Hollebakken R, Huang P, Hung K, Jensen V, Jones SJ, Kai H, Li D, Mah A, Marra M, McGhee J, Newbury R, Pouzyrev A, Riddle DL, Sonnhammer E, Tian H, Tu D, Tyson JR, Vatcher G, Warner A, Wong K, Zhao Z, Moerman DG (2003) Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol 68:159–169

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE (1999) The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 8:2133–2143

    Article  CAS  PubMed  Google Scholar 

  • Mongini T, Doriguzzi C, Palmucci L, De Francesco A, Bet L, Manfredi L, Ponzetto C, Bresolin N (1992) Lipid storage myopathy in multiple acyl-CoA dehydrogenase deficiency: an adult case. Eur Neurol 32:170–176

    Article  CAS  PubMed  Google Scholar 

  • Nimmo R, Woollard A (2002) Widespread organisation of C. elegans genes into operons: fact or function? Bioessays 24:983–987

    Article  CAS  PubMed  Google Scholar 

  • O’Neil NJ (2000) Analysis of essential genes in the sDf125 regions of Caenorhabditis elegans chromosome III. Ph.D. Thesis, Simon Fraser University, pp 1–172

  • Oey NA, Ijlst L, van Roermund CW, Wijburg FA, Wanders RJ (2005) dif-1 and colt, both implicated in early embryonic development, encode carnitine acylcarnitine translocase. Mol Genet Metab 85:121–124

    Article  CAS  PubMed  Google Scholar 

  • Olsen RK, Andresen BS, Christensen E, Bross P, Skovby F, Gregersen N (2003) Clear relationship between ETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Hum Mutat 22:12–23

    Article  CAS  PubMed  Google Scholar 

  • Olsen RK, Olpin SE, Andresen BS, Miedzybrodzka ZH, Pourfarzam M, Merinero B, Frerman FE, Beresford MW, Dean JC, Cornelius N, Andersen O, Oldfors A, Holme E, Gregersen N, Turnbull DM, Morris AA (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130:2045–2054

    Article  PubMed  Google Scholar 

  • Przyrembel H, Wendel U, Becker K, Bremer HJ, Bruinvis L, Ketting D, Wadman SK (1976) Glutaric aciduria type II: report on a previously undescribed metabolic disorder. Clin Chim Acta 66:227–239

    Article  CAS  PubMed  Google Scholar 

  • Reboul J, Vaglio P, Tzellas N, Thierry-Mieg N, Moore T, Jackson C, Shin-i T, Kohara Y, Thierry-Mieg D, Thierry-Mieg J, Lee H, Hitti J, Doucette-Stamm L, Hartley JL, Temple GF, Brasch MA, Vandenhaute J, Lamesch PE, Hill DE, Vidal M (2001) Open-reading-frame sequence tags (OSTs) support the existence of at least 17, 300 genes in C. elegans. Nat Genet 27:332–336

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka FJ, Beinert H (1975) A new membrane iron-sulfur flavoprotein of the mitochondrial electron transfer system. The entrance point of the fatty acyl dehydrogenation pathway? Biochem Biophys Res Commun 66:622–631

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka FJ, Beinert H (1977) A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J Biol Chem 252:8440–8445

    CAS  PubMed  Google Scholar 

  • Schug J (2008) Using TESS to predict transcription factor binding sites in DNA sequence. In: Curr Protoc Bioinformatics, Chap. 2, Unit 2.6

  • Spieth J, Brooke G, Kuersten S, Lea K, Blumenthal T (1993) Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell 73:521–532

    Article  CAS  PubMed  Google Scholar 

  • Stewart HI, O’Neil NJ, Janke DL, Franz NW, Chamberlin HM, Howell AM, Gilchrist EJ, Ha TT, Kuervers LM, Vatcher GP, Danielson JL, Baillie DL (1998) Lethal mutations defining 112 complementation groups in a 4.5 Mb sequenced region of Caenorhabditis elegans chromosome III. Mol Gen Genet 260:280–288

    CAS  PubMed  Google Scholar 

  • Swanson MA, Usselman RJ, Frerman FE, Eaton GR, Eaton SS (2008) The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein. Biochemistry 47:8894–8901

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Girard L, Ferreira HB, Sternberg PW, Emmons SW (2004) Dissection of cis-regulatory elements in the C. elegans Hox gene egl-5 promoter. Dev Biol 276:476–492

    Article  CAS  PubMed  Google Scholar 

  • Thacker C, Sheps JA, Rose AM (2006) Caenorhabditis elegans dpy-5 is a cuticle procollagen processed by a proprotein convertase. Cell Mol Life Sci 63:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Tsang WY, Lemire BD (2002) Mitochondrial genome content is regulated during nematode development. Biochem Biophys Res Commun 291:8–16

    Article  CAS  PubMed  Google Scholar 

  • Tsang WY, Lemire BD (2003) Mitochondrial ATP synthase controls larval development cell nonautonomously in Caenorhabditis elegans. Dev Dyn 226:719–726

    Article  CAS  PubMed  Google Scholar 

  • Vatcher GP, Thacker CM, Kaletta T, Schnabel H, Schnabel R, Baillie DL (1998) Serine hydroxymethyl transferase is maternally essential in Caenorhabditis elegans. J Biol Chem 273:6066–6073

    Article  CAS  PubMed  Google Scholar 

  • Vianey-Liaud C, Divry P, Gregersen N, Mathieu M (1987) The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metab Dis 10(Suppl 1):159–200

    Google Scholar 

  • Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC (2007) Identification of potential therapeutic drugs for huntington’s disease using Caenorhabditis elegans. PLoS ONE 2:e504

    Article  PubMed  Google Scholar 

  • Williams C, Xu L, Blumenthal T (1999) SL1 trans-splicing and 3′-end formation in a novel class of Caenorhabditis elegans operon. Mol Cell Biol 19:376–383

    CAS  PubMed  Google Scholar 

  • Yokota S, Togo SH, Maebuchi M, Bun-Ya M, Haraguchi CM, Kamiryo T (2002) Peroxisomes of the nematode Caenorhabditis elegans: distribution and morphological characteristics. Histochem Cell Biol 118:329–336

    CAS  PubMed  Google Scholar 

  • Zhang J, Frerman FE, Kim JJ (2006) Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci USA 103:16212–16217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nigel O’Neil, Robert Johnsen, and Stefan Taubert for manuscript comments. We would also like to thank the editors and anonymous reviewers of this manuscript for very helpful comments. D. S. Chew was supported by an NSERC (USRA). A. K. Mah was supported by an NSERC Doctoral Fellowship (PGS-D). D. L. Baillie is a Canada Research Chair in Genomics and is supported by a grant from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan K. Mah.

Additional information

Communicated by S. Hekimi.

D. S. Chew and A. K. Mah contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, D.S., Mah, A.K. & Baillie, D.L. Characterizing the transcriptional regulation of let-721, a Caenorhabditis elegans homolog of human electron flavoprotein dehydrogenase. Mol Genet Genomics 282, 555–570 (2009). https://doi.org/10.1007/s00438-009-0485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0485-z

Keywords

Navigation