Skip to main content
Log in

PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Rab-related small GTP-binding proteins are known to be involved in the regulation of the vesicular transport system in eukaryotic cells. We report the characterization of a previously isolated full-length cDNA PpRab1 from Pinus pinaster. Amino acid sequence analysis revealed the presence of G1–G5 conserved domains of the GTPase Ras superfamily and a double cysteine motif in the C-terminal, characteristic of Rab proteins. The PpRab1 protein shows high sequence similarity to several Rab1 GTP-binding proteins in plants. Phylogenetic analysis showed that, within the Ras superfamily, PpRab1 is more closely related to the Rab family and within this, PpRab1 protein was found to cluster with Arabidopsis subfamily AtRABE, whose members are known to regulate ER-to-Golgi membrane trafficking steps. PpRab1 transcripts were expressed at constitutively high levels for the initial stages of zygotic embryo development, and then their relative abundance decreased as embryo matures. The PpRab1 transcript is not embryo-specific as it was found in roots, cotyledons and hypocotyls. An increase in PpRab1 expression level was observed when seeds are germinated and collected at successive time points of development. In situ RT-PCR analysis revealed an expression signal in early zygotic embryos. In view of the proposed roles of Rab1 GTP-binding protein, the possible function of the protein encoded by PpRab1 in embryogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aspuria ET, Anai T, Fujii N, Ueda T, Miyoshi M, Matsui M, Uchimiya H (1995) Phenotypic instability of transgenic tobacco plants and their progenies expressing Arabidopsis thaliana small GTP-binding protein genes. Mol Gen Genet 246:509–513

    Article  PubMed  CAS  Google Scholar 

  • Bassam RA, Wasmeier C, Lamoreux L, Strom M, Seabra MC (2004) Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci 117:6401–6412

    Article  CAS  Google Scholar 

  • Batoko H, Zheng H-Q, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217

    Article  PubMed  CAS  Google Scholar 

  • Bischoff F, Molendijk A, Rajendrakumar CVS, Palme K (1999) GTP-binding proteins in plants. Cell Mol Life Sci 55:233–256

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanisms. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman G, Zhang Y, Oh T, Buell R (2006) Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62:485–501

    Article  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chavrier P, Goud B (1999) The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol 11:466–475

    Article  PubMed  CAS  Google Scholar 

  • Cheon CI, Lee NG, Siddique ABM, Bal AK, Verma DPS (1993) Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125–4135

    PubMed  CAS  Google Scholar 

  • Cheung AY, Chen CY-h, Glaven RH, de Graaf BHJ, Vidali L, Hepler PK, Hu W-m (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    Article  PubMed  CAS  Google Scholar 

  • Conner SD, Wessel GM (2001) Syntaxin, VAMP, and Rab3 are selectively expressed during sea urchin embryogenesis. Mol Reprod Dev 58:22–29

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Prog Lipid Res 39:393–408

    Article  PubMed  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Driouich A, Faye L, Staehelin LA (1993) The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci 18:210–214

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves S, Cairney J, Oliveira MM, Miguel C (2005a) Identification of genes differentially expressed during embryogenesis in maritime pine (Pinus pinaster). Silva Lusitana 13(2):203–216

    Google Scholar 

  • Gonçalves S, Cairney J, Maroco J, Oliveira MM, Miguel C (2005b) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222:556–563

    Article  PubMed  CAS  Google Scholar 

  • Hawes C, Faye L, Satiat-Jeunemaitre B (1995) The Golgi apparatus and pathways of vesicle trafficking. In: Smallwood M, Knox JP, Bowles D (eds) Membranes: specialised functions in plants. BIOS, Oxford

    Google Scholar 

  • Inaba T, Nagano Y, Nagasaki T, Sasaki Y (2002) Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 277:9183–9188

    Article  PubMed  CAS  Google Scholar 

  • Ingram GC, Simon R, Carpenter R, Coen ES (1998) The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability. Curr Biol 8:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  PubMed  CAS  Google Scholar 

  • Jako C, Teyssendier De La Serve B (1996) Cloning and characterization of a cDNA encoding a Rab1-like small GTP-binding protein from Petunia hybrida. Plant Mol Biol 31:923–926

    Google Scholar 

  • Jékely G (2003) Small GTPases and the evolution of the eukaryotic cell. BioEssays 25:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Kaarbø M, Crane DI, Murrell WG (2003) RhoA is highly up-regulated in the process of early heart development of the chick and important for normal embryogenesis. Dev Dyn 227:35–47

    Article  PubMed  CAS  Google Scholar 

  • Kamada I, Yamauchi S, Youssefian S, Sano H (1992) Transgenic tobacco plants expressing rgp 1, a gene encoding a ras-related GTP-binding protein from rice, show distinct morphological characteristics. Plant J 2:799–807

    CAS  Google Scholar 

  • Kang B-H, Busse JS, Dickey C, Rancour DM, Bednarek SY (2001) The Arabidopsis cell plate-associated dynamin-like protein, ADL1Ap, is required for multiple stages of plant growth and development. Plant Physiol 126:47–68

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Würschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16: S190–S202

    Article  PubMed  CAS  Google Scholar 

  • Li H, Shen J-J, Zheng Z-L, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1995) Molecular genetics of plant embryogenesis. Annu Rev Plant Physiol Plant Mol Biol 46:369–394

    Article  CAS  Google Scholar 

  • Moore I, Diefenthal T, Zarsky V, Schell J, Palme K (1997) A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings. Proc Natl Acad Sci 94:762–767

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Murai N, Matsuno R, Sasaki Y (1993) Isolation and characterization of cDNAs that encode eleven small GTP-binding proteins from Pisum sativum. Plant Cell Physiol 34:447–455

    PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB (1997) Genedoc: a tool for editing and annotating multiple sequence alignments (http://www.psc.edu/biomed/genedoc)

  • Nuoffer C, Davidson HW, Matteson J, Meinkoth J, Balch WE (1994) A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J Cell Biol 125:225–237

    Article  PubMed  CAS  Google Scholar 

  • Palme K, Diefenthal T, Vingron M, Sander C, Schell J (1992) Molecular cloning and structural analysis of genes from Zea mays (L.) coding for members of the ras-related ypt gene family. Proc Natl Acad Sci USA 89:787–791

    Article  PubMed  CAS  Google Scholar 

  • Palme K, Diefenthal T, Moore I (1993) The YPT gene family from maize and Arabidopsis: structural and functional analysis. J Exp Bot 44:183–195

    CAS  Google Scholar 

  • Pennington SR (1995) GTP-binding proteins. 1 Heterotrimeric G Proteins. Protein Profile 2:167–177

    PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901

    Article  PubMed  CAS  Google Scholar 

  • Plutner H, Cox AD, Pind S, Khosravi-Far R, Bourne JR, Schwaninger R, Der CJ, Balch WE (1991) Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 115:31–43

    Article  PubMed  CAS  Google Scholar 

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: Proceedings of the TAPPI R&D division biological sciences symposium, October 3–6, Minneapolis, MN, pp 31–34. Technical Association of the Pulp and Paper Industry Press, Atlanta, GA

  • Rodríguez-Concepción M, Yalovsky S, Gruissem W (1999) Protein prenylation in plants: old friends and new targets. Plant Mol Biol 39:865–870

    Article  PubMed  Google Scholar 

  • Satoh AK, Tokunaga F, Kawamura S, Ozaki K (1997) In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. J Cell Sci 110:2943–2953

    PubMed  CAS  Google Scholar 

  • Schiene K, Donath S, Brecht M, Pühler A, Niehaus K (2004) A Rab-related small GTP binding protein is predominantly expressed in root nodules of Medicago sativa. Mol Gen Genomics 272:57–66

    Article  CAS  Google Scholar 

  • Seabra MC (1998) Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 10:167–172

    Article  PubMed  CAS  Google Scholar 

  • Segev N (1991) Mediation of the attachment or fusion step in vesicular transport by the GTP-Binding Ypt1 protein. Science 252:1553–1556

    Article  PubMed  CAS  Google Scholar 

  • Segev N, Mulholland J, Botstein D (1988) The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915–924

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Leu W-M, Gilimor CS, Xia G, Feldmann KA, Chua N-H (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec 7. Cell 77:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Tereso S, Nolasco G, Oliveira MM (2003) Cellular location of Prune dwarf virus in almond sections by in situ reverse transcription-polymerase chain reaction. Phytopatology 93:278–285

    Article  CAS  Google Scholar 

  • Soogard M, Tani K, Ruby YR, Geromanos S, Tempst P, Kirchhausen T, Rothman JE, Söllner T (1994) A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78:937–948

    Article  Google Scholar 

  • Steele-Mortimer O, Clague MJ, Huber LA, Chavrier P, Gruenberg J, Gorvel J-P (1994) The N-terminal domain of a rab protein is involved in membrane–membrane recognition and-or fusion. EMBO J 13:34–41

    PubMed  CAS  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gaps penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119:749–761

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, McElver JA, Liu C-h, Yang LJ, Wu JQ, Martinez A, Patton DA, Meinke DW (2002) Diversity of TITAN functions in Arabidopsis seed development. Plant Physio1 28:38–51

    Article  Google Scholar 

  • Ueda T, Matsuda N, Uchimya H, Nakano A (2000) Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant J 21:341–349

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  CAS  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the Small GTPase Gene Superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  PubMed  CAS  Google Scholar 

  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jurgens G, VanKammen A, DeVries SC (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8:783–791

    Article  PubMed  CAS  Google Scholar 

  • Ward, JH Jr (1963) Hierarchical grouping to maximize payoff. (WADD-TN-61–29, AD-261 750). Lackland AFB, TX: Personnel Laboratory, July 1963

  • Yochem J, Sundaram M, Han M (1997) Ras is required for a limited number of cell fates and not for general proliferation in Caenorhabditis elegans. Mol Cell Biol 17:2716–2722

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fundação para a Ciência e a Tecnologia (FCT) and the III Framework Program of the EC through grant SFRH/BD/3135/2000 to Sónia Gonçalves. Dr. John Cairney acknowledges support from the National Science Foundation Plant Genome Program (Grant # 0217594). Dr João Maroco is acknowledged for assisting with the statistical analysis. Estação Florestal Nacional (EFN) is acknowledged for making plant material available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Miguel.

Additional information

Communicated by H. Ronne.

The nucleotide sequence reported in this paper has been submitted to Genbank under accession number DQ372931.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, S., Cairney, J., Rodríguez, M.P. et al. PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278, 273–282 (2007). https://doi.org/10.1007/s00438-007-0247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0247-8

Keywords

Navigation